Spaces:
Running
Running
# Lint as: python3 | |
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for BERT configurations and models instantiation.""" | |
import tensorflow as tf | |
from official.nlp.configs import bert | |
from official.nlp.configs import encoders | |
class BertModelsTest(tf.test.TestCase): | |
def test_network_invocation(self): | |
config = bert.BertPretrainerConfig( | |
encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1)) | |
_ = bert.instantiate_bertpretrainer_from_cfg(config) | |
# Invokes with classification heads. | |
config = bert.BertPretrainerConfig( | |
encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1), | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name="next_sentence") | |
]) | |
_ = bert.instantiate_bertpretrainer_from_cfg(config) | |
with self.assertRaises(ValueError): | |
config = bert.BertPretrainerConfig( | |
encoder=encoders.TransformerEncoderConfig( | |
vocab_size=10, num_layers=1), | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name="next_sentence"), | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name="next_sentence") | |
]) | |
_ = bert.instantiate_bertpretrainer_from_cfg(config) | |
def test_checkpoint_items(self): | |
config = bert.BertPretrainerConfig( | |
encoder=encoders.TransformerEncoderConfig(vocab_size=10, num_layers=1), | |
cls_heads=[ | |
bert.ClsHeadConfig( | |
inner_dim=10, num_classes=2, name="next_sentence") | |
]) | |
encoder = bert.instantiate_bertpretrainer_from_cfg(config) | |
self.assertSameElements(encoder.checkpoint_items.keys(), | |
["encoder", "next_sentence.pooler_dense"]) | |
if __name__ == "__main__": | |
tf.test.main() | |