Spaces:
Running
Running
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
from absl import logging | |
import numpy as np | |
import tensorflow as tf | |
from official.nlp.xlnet import xlnet_modeling | |
class PositionalEmbeddingLayerTest(tf.test.TestCase): | |
def test_positional_embedding(self): | |
"""A low-dimensional example is tested. | |
With len(pos_seq)=2 and d_model=4: | |
pos_seq = [[1.], [0.]] | |
inv_freq = [1., 0.01] | |
pos_seq x inv_freq = [[1, 0.01], [0., 0.]] | |
pos_emb = [[sin(1.), sin(0.01), cos(1.), cos(0.01)], | |
[sin(0.), sin(0.), cos(0.), cos(0.)]] | |
= [[0.84147096, 0.00999983, 0.54030228, 0.99994999], | |
[0., 0., 1., 1.]] | |
""" | |
target = np.array([[[0.84147096, 0.00999983, 0.54030228, 0.99994999]], | |
[[0., 0., 1., 1.]]]) | |
d_model = 4 | |
pos_seq = tf.range(1, -1, -1.0) # [1., 0.] | |
pos_emb_layer = xlnet_modeling.PositionalEmbedding(d_model) | |
pos_emb = pos_emb_layer(pos_seq, batch_size=None).numpy().astype(float) | |
logging.info(pos_emb) | |
self.assertAllClose(pos_emb, target) | |
if __name__ == "__main__": | |
tf.test.main() | |