Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for the metrics module.""" | |
import contextlib | |
import numpy as np | |
import tensorflow as tf | |
import metrics | |
class AccuracyTest(tf.test.TestCase): | |
def setUp(self): | |
tf.test.TestCase.setUp(self) | |
self.rng = np.random.RandomState([11, 23, 50]) | |
self.num_char_classes = 3 | |
self.batch_size = 4 | |
self.seq_length = 5 | |
self.rej_char = 42 | |
def initialized_session(self): | |
"""Wrapper for test session context manager with required initialization. | |
Yields: | |
A session object that should be used as a context manager. | |
""" | |
with self.cached_session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
sess.run(tf.local_variables_initializer()) | |
yield sess | |
def _fake_labels(self): | |
return self.rng.randint( | |
low=0, | |
high=self.num_char_classes, | |
size=(self.batch_size, self.seq_length), | |
dtype='int32') | |
def _incorrect_copy(self, values, bad_indexes): | |
incorrect = np.copy(values) | |
incorrect[bad_indexes] = values[bad_indexes] + 1 | |
return incorrect | |
def test_sequence_accuracy_identical_samples(self): | |
labels_tf = tf.convert_to_tensor(self._fake_labels()) | |
accuracy_tf = metrics.sequence_accuracy(labels_tf, labels_tf, | |
self.rej_char) | |
with self.initialized_session() as sess: | |
accuracy_np = sess.run(accuracy_tf) | |
self.assertAlmostEqual(accuracy_np, 1.0) | |
def test_sequence_accuracy_one_char_difference(self): | |
ground_truth_np = self._fake_labels() | |
ground_truth_tf = tf.convert_to_tensor(ground_truth_np) | |
prediction_tf = tf.convert_to_tensor( | |
self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) | |
accuracy_tf = metrics.sequence_accuracy(prediction_tf, ground_truth_tf, | |
self.rej_char) | |
with self.initialized_session() as sess: | |
accuracy_np = sess.run(accuracy_tf) | |
# 1 of 4 sequences is incorrect. | |
self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / self.batch_size) | |
def test_char_accuracy_one_char_difference_with_padding(self): | |
ground_truth_np = self._fake_labels() | |
ground_truth_tf = tf.convert_to_tensor(ground_truth_np) | |
prediction_tf = tf.convert_to_tensor( | |
self._incorrect_copy(ground_truth_np, bad_indexes=((0, 0)))) | |
accuracy_tf = metrics.char_accuracy(prediction_tf, ground_truth_tf, | |
self.rej_char) | |
with self.initialized_session() as sess: | |
accuracy_np = sess.run(accuracy_tf) | |
chars_count = self.seq_length * self.batch_size | |
self.assertAlmostEqual(accuracy_np, 1.0 - 1.0 / chars_count) | |
if __name__ == '__main__': | |
tf.test.main() | |