Spaces:
Running
Running
# Script to run deep speech model to achieve the MLPerf target (WER = 0.23) | |
# Step 1: download the LibriSpeech dataset. | |
echo "Data downloading..." | |
python data/download.py | |
## After data downloading, the dataset directories are: | |
train_clean_100="/tmp/librispeech_data/train-clean-100/LibriSpeech/train-clean-100.csv" | |
train_clean_360="/tmp/librispeech_data/train-clean-360/LibriSpeech/train-clean-360.csv" | |
train_other_500="/tmp/librispeech_data/train-other-500/LibriSpeech/train-other-500.csv" | |
dev_clean="/tmp/librispeech_data/dev-clean/LibriSpeech/dev-clean.csv" | |
dev_other="/tmp/librispeech_data/dev-other/LibriSpeech/dev-other.csv" | |
test_clean="/tmp/librispeech_data/test-clean/LibriSpeech/test-clean.csv" | |
test_other="/tmp/librispeech_data/test-other/LibriSpeech/test-other.csv" | |
# Step 2: generate train dataset and evaluation dataset | |
echo "Data preprocessing..." | |
train_file="/tmp/librispeech_data/train_dataset.csv" | |
eval_file="/tmp/librispeech_data/eval_dataset.csv" | |
head -1 $train_clean_100 > $train_file | |
for filename in $train_clean_100 $train_clean_360 $train_other_500 | |
do | |
sed 1d $filename >> $train_file | |
done | |
head -1 $dev_clean > $eval_file | |
for filename in $dev_clean $dev_other | |
do | |
sed 1d $filename >> $eval_file | |
done | |
# Step 3: filter out the audio files that exceed max time duration. | |
final_train_file="/tmp/librispeech_data/final_train_dataset.csv" | |
final_eval_file="/tmp/librispeech_data/final_eval_dataset.csv" | |
MAX_AUDIO_LEN=27.0 | |
awk -v maxlen="$MAX_AUDIO_LEN" 'BEGIN{FS="\t";} NR==1{print $0} NR>1{cmd="soxi -D "$1""; cmd|getline x; if(x<=maxlen) {print $0}; close(cmd);}' $train_file > $final_train_file | |
awk -v maxlen="$MAX_AUDIO_LEN" 'BEGIN{FS="\t";} NR==1{print $0} NR>1{cmd="soxi -D "$1""; cmd|getline x; if(x<=maxlen) {print $0}; close(cmd);}' $eval_file > $final_eval_file | |
# Step 4: run the training and evaluation loop in background, and save the running info to a log file | |
echo "Model training and evaluation..." | |
start=`date +%s` | |
log_file=log_`date +%Y-%m-%d` | |
nohup python deep_speech.py --train_data_dir=$final_train_file --eval_data_dir=$final_eval_file --num_gpus=-1 --wer_threshold=0.23 --seed=1 >$log_file 2>&1& | |
end=`date +%s` | |
runtime=$((end-start)) | |
echo "Model training time is" $runtime "seconds." | |