Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Tests for object_detection.matchers.argmax_matcher.""" | |
import numpy as np | |
import tensorflow.compat.v1 as tf | |
from object_detection.matchers import argmax_matcher | |
from object_detection.utils import test_case | |
class ArgMaxMatcherTest(test_case.TestCase): | |
def test_return_correct_matches_with_default_thresholds(self): | |
def graph_fn(similarity_matrix): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None) | |
match = matcher.match(similarity_matrix) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1., 1, 1, 3, 1], | |
[2, -1, 2, 0, 4], | |
[3, 0, -1, 0, 0]], dtype=np.float32) | |
expected_matched_rows = np.array([2, 0, 1, 0, 1]) | |
(res_matched_cols, res_unmatched_cols, | |
res_match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(res_match_results[res_matched_cols], | |
expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], [0, 1, 2, 3, 4]) | |
self.assertFalse(np.all(res_unmatched_cols)) | |
def test_return_correct_matches_with_empty_rows(self): | |
def graph_fn(similarity_matrix): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None) | |
match = matcher.match(similarity_matrix) | |
return match.unmatched_column_indicator() | |
similarity = 0.2 * np.ones([0, 5], dtype=np.float32) | |
res_unmatched_cols = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], np.arange(5)) | |
def test_return_correct_matches_with_matched_threshold(self): | |
def graph_fn(similarity): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.) | |
match = matcher.match(similarity) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[2, -1, 2, 0, 4], | |
[3, 0, -1, 0, 0]], dtype=np.float32) | |
expected_matched_cols = np.array([0, 3, 4]) | |
expected_matched_rows = np.array([2, 0, 1]) | |
expected_unmatched_cols = np.array([1, 2]) | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_return_correct_matches_with_matched_and_unmatched_threshold(self): | |
def graph_fn(similarity): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., | |
unmatched_threshold=2.) | |
match = matcher.match(similarity) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[2, -1, 2, 0, 4], | |
[3, 0, -1, 0, 0]], dtype=np.float32) | |
expected_matched_cols = np.array([0, 3, 4]) | |
expected_matched_rows = np.array([2, 0, 1]) | |
expected_unmatched_cols = np.array([1]) # col 2 has too high maximum val | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_return_correct_matches_negatives_lower_than_unmatched_false(self): | |
def graph_fn(similarity): | |
matcher = argmax_matcher.ArgMaxMatcher( | |
matched_threshold=3., | |
unmatched_threshold=2., | |
negatives_lower_than_unmatched=False) | |
match = matcher.match(similarity) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[2, -1, 2, 0, 4], | |
[3, 0, -1, 0, 0]], dtype=np.float32) | |
expected_matched_cols = np.array([0, 3, 4]) | |
expected_matched_rows = np.array([2, 0, 1]) | |
expected_unmatched_cols = np.array([2]) # col 1 has too low maximum val | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_return_correct_matches_unmatched_row_not_using_force_match(self): | |
def graph_fn(similarity): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., | |
unmatched_threshold=2.) | |
match = matcher.match(similarity) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[-1, 0, -2, -2, -1], | |
[3, 0, -1, 2, 0]], dtype=np.float32) | |
expected_matched_cols = np.array([0, 3]) | |
expected_matched_rows = np.array([2, 0]) | |
expected_unmatched_cols = np.array([1, 2, 4]) | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_return_correct_matches_unmatched_row_while_using_force_match(self): | |
def graph_fn(similarity): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., | |
unmatched_threshold=2., | |
force_match_for_each_row=True) | |
match = matcher.match(similarity) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[-1, 0, -2, -2, -1], | |
[3, 0, -1, 2, 0]], dtype=np.float32) | |
expected_matched_cols = np.array([0, 1, 3]) | |
expected_matched_rows = np.array([2, 1, 0]) | |
expected_unmatched_cols = np.array([2, 4]) # col 2 has too high max val | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_return_correct_matches_using_force_match_padded_groundtruth(self): | |
def graph_fn(similarity, valid_rows): | |
matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3., | |
unmatched_threshold=2., | |
force_match_for_each_row=True) | |
match = matcher.match(similarity, valid_rows) | |
matched_cols = match.matched_column_indicator() | |
unmatched_cols = match.unmatched_column_indicator() | |
match_results = match.match_results | |
return (matched_cols, unmatched_cols, match_results) | |
similarity = np.array([[1, 1, 1, 3, 1], | |
[-1, 0, -2, -2, -1], | |
[0, 0, 0, 0, 0], | |
[3, 0, -1, 2, 0], | |
[0, 0, 0, 0, 0]], dtype=np.float32) | |
valid_rows = np.array([True, True, False, True, False]) | |
expected_matched_cols = np.array([0, 1, 3]) | |
expected_matched_rows = np.array([3, 1, 0]) | |
expected_unmatched_cols = np.array([2, 4]) # col 2 has too high max val | |
(res_matched_cols, res_unmatched_cols, | |
match_results) = self.execute(graph_fn, [similarity, valid_rows]) | |
self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows) | |
self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols) | |
self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], | |
expected_unmatched_cols) | |
def test_valid_arguments_corner_case(self): | |
argmax_matcher.ArgMaxMatcher(matched_threshold=1, | |
unmatched_threshold=1) | |
def test_invalid_arguments_corner_case_negatives_lower_than_thres_false(self): | |
with self.assertRaises(ValueError): | |
argmax_matcher.ArgMaxMatcher(matched_threshold=1, | |
unmatched_threshold=1, | |
negatives_lower_than_unmatched=False) | |
def test_invalid_arguments_no_matched_threshold(self): | |
with self.assertRaises(ValueError): | |
argmax_matcher.ArgMaxMatcher(matched_threshold=None, | |
unmatched_threshold=4) | |
def test_invalid_arguments_unmatched_thres_larger_than_matched_thres(self): | |
with self.assertRaises(ValueError): | |
argmax_matcher.ArgMaxMatcher(matched_threshold=1, | |
unmatched_threshold=2) | |
if __name__ == '__main__': | |
tf.test.main() | |