Spaces:
Running
Running
# R-FCN with Resnet-101 (v1), configuration for MSCOCO Dataset. | |
# Users should configure the fine_tune_checkpoint field in the train config as | |
# well as the label_map_path and input_path fields in the train_input_reader and | |
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that | |
# should be configured. | |
model { | |
faster_rcnn { | |
num_classes: 90 | |
image_resizer { | |
keep_aspect_ratio_resizer { | |
min_dimension: 600 | |
max_dimension: 1024 | |
} | |
} | |
feature_extractor { | |
type: 'faster_rcnn_resnet101' | |
first_stage_features_stride: 16 | |
} | |
first_stage_anchor_generator { | |
grid_anchor_generator { | |
scales: [0.25, 0.5, 1.0, 2.0] | |
aspect_ratios: [0.5, 1.0, 2.0] | |
height_stride: 16 | |
width_stride: 16 | |
} | |
} | |
first_stage_box_predictor_conv_hyperparams { | |
op: CONV | |
regularizer { | |
l2_regularizer { | |
weight: 0.0 | |
} | |
} | |
initializer { | |
truncated_normal_initializer { | |
stddev: 0.01 | |
} | |
} | |
} | |
first_stage_nms_score_threshold: 0.0 | |
first_stage_nms_iou_threshold: 0.7 | |
first_stage_max_proposals: 300 | |
first_stage_localization_loss_weight: 2.0 | |
first_stage_objectness_loss_weight: 1.0 | |
second_stage_box_predictor { | |
rfcn_box_predictor { | |
conv_hyperparams { | |
op: CONV | |
regularizer { | |
l2_regularizer { | |
weight: 0.0 | |
} | |
} | |
initializer { | |
truncated_normal_initializer { | |
stddev: 0.01 | |
} | |
} | |
} | |
crop_height: 18 | |
crop_width: 18 | |
num_spatial_bins_height: 3 | |
num_spatial_bins_width: 3 | |
} | |
} | |
second_stage_post_processing { | |
batch_non_max_suppression { | |
score_threshold: 0.0 | |
iou_threshold: 0.6 | |
max_detections_per_class: 100 | |
max_total_detections: 300 | |
} | |
score_converter: SOFTMAX | |
} | |
second_stage_localization_loss_weight: 2.0 | |
second_stage_classification_loss_weight: 1.0 | |
} | |
} | |
train_config: { | |
batch_size: 1 | |
optimizer { | |
momentum_optimizer: { | |
learning_rate: { | |
manual_step_learning_rate { | |
initial_learning_rate: 0.0003 | |
schedule { | |
step: 900000 | |
learning_rate: .00003 | |
} | |
schedule { | |
step: 1200000 | |
learning_rate: .000003 | |
} | |
} | |
} | |
momentum_optimizer_value: 0.9 | |
} | |
use_moving_average: false | |
} | |
gradient_clipping_by_norm: 10.0 | |
fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" | |
from_detection_checkpoint: true | |
# Note: The below line limits the training process to 200K steps, which we | |
# empirically found to be sufficient enough to train the pets dataset. This | |
# effectively bypasses the learning rate schedule (the learning rate will | |
# never decay). Remove the below line to train indefinitely. | |
num_steps: 200000 | |
data_augmentation_options { | |
random_horizontal_flip { | |
} | |
} | |
} | |
train_input_reader: { | |
tf_record_input_reader { | |
input_path: "PATH_TO_BE_CONFIGURED/mscoco_train.record-?????-of-00100" | |
} | |
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" | |
} | |
eval_config: { | |
num_examples: 8000 | |
# Note: The below line limits the evaluation process to 10 evaluations. | |
# Remove the below line to evaluate indefinitely. | |
max_evals: 10 | |
} | |
eval_input_reader: { | |
tf_record_input_reader { | |
input_path: "PATH_TO_BE_CONFIGURED/mscoco_val.record-?????-of-00010" | |
} | |
label_map_path: "PATH_TO_BE_CONFIGURED/mscoco_label_map.pbtxt" | |
shuffle: false | |
num_readers: 1 | |
} | |