Spaces:
Running
Running
# Copyright 2017 The TensorFlow Authors All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
"""Creates rotator network model. | |
This model performs the out-of-plane rotations given input image and action. | |
The action is either no-op, rotate clockwise or rotate counter-clockwise. | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import tensorflow as tf | |
def bilinear(input_x, input_y, output_size): | |
"""Define the bilinear transformation layer.""" | |
shape_x = input_x.get_shape().as_list() | |
shape_y = input_y.get_shape().as_list() | |
weights_initializer = tf.truncated_normal_initializer(stddev=0.02, | |
seed=1) | |
biases_initializer = tf.constant_initializer(0.0) | |
matrix = tf.get_variable("Matrix", [shape_x[1], shape_y[1], output_size], | |
tf.float32, initializer=weights_initializer) | |
bias = tf.get_variable("Bias", [output_size], | |
initializer=biases_initializer) | |
# Add to GraphKeys.MODEL_VARIABLES | |
tf.contrib.framework.add_model_variable(matrix) | |
tf.contrib.framework.add_model_variable(bias) | |
# Define the transformation | |
h0 = tf.matmul(input_x, tf.reshape(matrix, | |
[shape_x[1], shape_y[1]*output_size])) | |
h0 = tf.reshape(h0, [-1, shape_y[1], output_size]) | |
h1 = tf.tile(tf.reshape(input_y, [-1, shape_y[1], 1]), | |
[1, 1, output_size]) | |
h1 = tf.multiply(h0, h1) | |
return tf.reduce_sum(h1, 1) + bias | |
def model(poses, actions, params, is_training): | |
"""Model for performing rotation.""" | |
del is_training # Unused | |
return bilinear(poses, actions, params.z_dim) | |