Spaces:
Running
Running
# Copyright 2016 Google Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
r"""LSUN dataset formatting. | |
Download and format the LSUN dataset as follow: | |
git clone https://github.com/fyu/lsun.git | |
cd lsun | |
python2.7 download.py -c [CATEGORY] | |
Then unzip the downloaded .zip files before executing: | |
python2.7 data.py export [IMAGE_DB_PATH] --out_dir [LSUN_FOLDER] --flat | |
Then use the script as follow: | |
python lsun_formatting.py \ | |
--file_out [OUTPUT_FILE_PATH_PREFIX] \ | |
--fn_root [LSUN_FOLDER] | |
""" | |
from __future__ import print_function | |
import os | |
import os.path | |
import numpy | |
import skimage.transform | |
from PIL import Image | |
import tensorflow as tf | |
tf.flags.DEFINE_string("file_out", "", | |
"Filename of the output .tfrecords file.") | |
tf.flags.DEFINE_string("fn_root", "", "Name of root file path.") | |
FLAGS = tf.flags.FLAGS | |
def _int64_feature(value): | |
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) | |
def _bytes_feature(value): | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) | |
def main(): | |
"""Main converter function.""" | |
fn_root = FLAGS.fn_root | |
img_fn_list = os.listdir(fn_root) | |
img_fn_list = [img_fn for img_fn in img_fn_list | |
if img_fn.endswith('.webp')] | |
num_examples = len(img_fn_list) | |
n_examples_per_file = 10000 | |
for example_idx, img_fn in enumerate(img_fn_list): | |
if example_idx % n_examples_per_file == 0: | |
file_out = "%s_%05d.tfrecords" | |
file_out = file_out % (FLAGS.file_out, | |
example_idx // n_examples_per_file) | |
print("Writing on:", file_out) | |
writer = tf.python_io.TFRecordWriter(file_out) | |
if example_idx % 1000 == 0: | |
print(example_idx, "/", num_examples) | |
image_raw = numpy.array(Image.open(os.path.join(fn_root, img_fn))) | |
rows = image_raw.shape[0] | |
cols = image_raw.shape[1] | |
depth = image_raw.shape[2] | |
downscale = min(rows / 96., cols / 96.) | |
image_raw = skimage.transform.pyramid_reduce(image_raw, downscale) | |
image_raw *= 255. | |
image_raw = image_raw.astype("uint8") | |
rows = image_raw.shape[0] | |
cols = image_raw.shape[1] | |
depth = image_raw.shape[2] | |
image_raw = image_raw.tostring() | |
example = tf.train.Example( | |
features=tf.train.Features( | |
feature={ | |
"height": _int64_feature(rows), | |
"width": _int64_feature(cols), | |
"depth": _int64_feature(depth), | |
"image_raw": _bytes_feature(image_raw) | |
} | |
) | |
) | |
writer.write(example.SerializeToString()) | |
if example_idx % n_examples_per_file == (n_examples_per_file - 1): | |
writer.close() | |
writer.close() | |
if __name__ == "__main__": | |
main() | |