# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests official.nlp.albert.export_albert_tfhub.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import tensorflow as tf import tensorflow_hub as hub from official.nlp.albert import configs from official.nlp.albert import export_albert_tfhub class ExportAlbertTfhubTest(tf.test.TestCase): def test_export_albert_tfhub(self): # Exports a savedmodel for TF-Hub albert_config = configs.AlbertConfig( vocab_size=100, embedding_size=8, hidden_size=16, intermediate_size=32, max_position_embeddings=128, num_attention_heads=2, num_hidden_layers=1) bert_model, encoder = export_albert_tfhub.create_albert_model(albert_config) model_checkpoint_dir = os.path.join(self.get_temp_dir(), "checkpoint") checkpoint = tf.train.Checkpoint(model=encoder) checkpoint.save(os.path.join(model_checkpoint_dir, "test")) model_checkpoint_path = tf.train.latest_checkpoint(model_checkpoint_dir) sp_model_file = os.path.join(self.get_temp_dir(), "sp_tokenizer.model") with tf.io.gfile.GFile(sp_model_file, "w") as f: f.write("dummy content") hub_destination = os.path.join(self.get_temp_dir(), "hub") export_albert_tfhub.export_albert_tfhub( albert_config, model_checkpoint_path, hub_destination, sp_model_file=sp_model_file) # Restores a hub KerasLayer. hub_layer = hub.KerasLayer(hub_destination, trainable=True) if hasattr(hub_layer, "resolved_object"): with tf.io.gfile.GFile( hub_layer.resolved_object.sp_model_file.asset_path.numpy()) as f: self.assertEqual("dummy content", f.read()) # Checks the hub KerasLayer. for source_weight, hub_weight in zip(bert_model.trainable_weights, hub_layer.trainable_weights): self.assertAllClose(source_weight.numpy(), hub_weight.numpy()) dummy_ids = np.zeros((2, 10), dtype=np.int32) hub_outputs = hub_layer([dummy_ids, dummy_ids, dummy_ids]) source_outputs = bert_model([dummy_ids, dummy_ids, dummy_ids]) # The outputs of hub module are "pooled_output" and "sequence_output", # while the outputs of encoder is in reversed order, i.e., # "sequence_output" and "pooled_output". encoder_outputs = reversed(encoder([dummy_ids, dummy_ids, dummy_ids])) self.assertEqual(hub_outputs[0].shape, (2, 16)) self.assertEqual(hub_outputs[1].shape, (2, 10, 16)) for source_output, hub_output, encoder_output in zip( source_outputs, hub_outputs, encoder_outputs): self.assertAllClose(source_output.numpy(), hub_output.numpy()) self.assertAllClose(source_output.numpy(), encoder_output.numpy()) if __name__ == "__main__": tf.test.main()