# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Transformer-based text encoder network.""" # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function import tensorflow as tf from official.modeling import activations from official.nlp.modeling import layers @tf.keras.utils.register_keras_serializable(package='Text') class TransformerEncoder(tf.keras.Model): """Bi-directional Transformer-based encoder network. This network implements a bi-directional Transformer-based encoder as described in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" (https://arxiv.org/abs/1810.04805). It includes the embedding lookups and transformer layers, but not the masked language model or classification task networks. The default values for this object are taken from the BERT-Base implementation in "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". Arguments: vocab_size: The size of the token vocabulary. hidden_size: The size of the transformer hidden layers. num_layers: The number of transformer layers. num_attention_heads: The number of attention heads for each transformer. The hidden size must be divisible by the number of attention heads. sequence_length: The sequence length that this encoder expects. If None, the sequence length is dynamic; if an integer, the encoder will require sequences padded to this length. max_sequence_length: The maximum sequence length that this encoder can consume. If None, max_sequence_length uses the value from sequence length. This determines the variable shape for positional embeddings. type_vocab_size: The number of types that the 'type_ids' input can take. intermediate_size: The intermediate size for the transformer layers. activation: The activation to use for the transformer layers. dropout_rate: The dropout rate to use for the transformer layers. attention_dropout_rate: The dropout rate to use for the attention layers within the transformer layers. initializer: The initialzer to use for all weights in this encoder. return_all_encoder_outputs: Whether to output sequence embedding outputs of all encoder transformer layers. output_range: The sequence output range, [0, output_range), by slicing the target sequence of the last transformer layer. `None` means the entire target sequence will attend to the source sequence, which yeilds the full output. embedding_width: The width of the word embeddings. If the embedding width is not equal to hidden size, embedding parameters will be factorized into two matrices in the shape of ['vocab_size', 'embedding_width'] and ['embedding_width', 'hidden_size'] ('embedding_width' is usually much smaller than 'hidden_size'). embedding_layer: The word embedding layer. `None` means we will create a new embedding layer. Otherwise, we will reuse the given embedding layer. This parameter is originally added for ELECTRA model which needs to tie the generator embeddings with the discriminator embeddings. """ def __init__(self, vocab_size, hidden_size=768, num_layers=12, num_attention_heads=12, sequence_length=512, max_sequence_length=None, type_vocab_size=16, intermediate_size=3072, activation=activations.gelu, dropout_rate=0.1, attention_dropout_rate=0.1, initializer=tf.keras.initializers.TruncatedNormal(stddev=0.02), return_all_encoder_outputs=False, output_range=None, embedding_width=None, embedding_layer=None, **kwargs): activation = tf.keras.activations.get(activation) initializer = tf.keras.initializers.get(initializer) if not max_sequence_length: max_sequence_length = sequence_length self._self_setattr_tracking = False self._config_dict = { 'vocab_size': vocab_size, 'hidden_size': hidden_size, 'num_layers': num_layers, 'num_attention_heads': num_attention_heads, 'sequence_length': sequence_length, 'max_sequence_length': max_sequence_length, 'type_vocab_size': type_vocab_size, 'intermediate_size': intermediate_size, 'activation': tf.keras.activations.serialize(activation), 'dropout_rate': dropout_rate, 'attention_dropout_rate': attention_dropout_rate, 'initializer': tf.keras.initializers.serialize(initializer), 'return_all_encoder_outputs': return_all_encoder_outputs, 'output_range': output_range, 'embedding_width': embedding_width, } word_ids = tf.keras.layers.Input( shape=(sequence_length,), dtype=tf.int32, name='input_word_ids') mask = tf.keras.layers.Input( shape=(sequence_length,), dtype=tf.int32, name='input_mask') type_ids = tf.keras.layers.Input( shape=(sequence_length,), dtype=tf.int32, name='input_type_ids') if embedding_width is None: embedding_width = hidden_size if embedding_layer is None: self._embedding_layer = layers.OnDeviceEmbedding( vocab_size=vocab_size, embedding_width=embedding_width, initializer=initializer, name='word_embeddings') else: self._embedding_layer = embedding_layer word_embeddings = self._embedding_layer(word_ids) # Always uses dynamic slicing for simplicity. self._position_embedding_layer = layers.PositionEmbedding( initializer=initializer, use_dynamic_slicing=True, max_sequence_length=max_sequence_length, name='position_embedding') position_embeddings = self._position_embedding_layer(word_embeddings) self._type_embedding_layer = layers.OnDeviceEmbedding( vocab_size=type_vocab_size, embedding_width=embedding_width, initializer=initializer, use_one_hot=True, name='type_embeddings') type_embeddings = self._type_embedding_layer(type_ids) embeddings = tf.keras.layers.Add()( [word_embeddings, position_embeddings, type_embeddings]) embeddings = ( tf.keras.layers.LayerNormalization( name='embeddings/layer_norm', axis=-1, epsilon=1e-12, dtype=tf.float32)(embeddings)) embeddings = ( tf.keras.layers.Dropout(rate=dropout_rate)(embeddings)) # We project the 'embedding' output to 'hidden_size' if it is not already # 'hidden_size'. if embedding_width != hidden_size: self._embedding_projection = tf.keras.layers.experimental.EinsumDense( '...x,xy->...y', output_shape=hidden_size, bias_axes='y', kernel_initializer=initializer, name='embedding_projection') embeddings = self._embedding_projection(embeddings) self._transformer_layers = [] data = embeddings attention_mask = layers.SelfAttentionMask()([data, mask]) encoder_outputs = [] for i in range(num_layers): if i == num_layers - 1 and output_range is not None: transformer_output_range = output_range else: transformer_output_range = None layer = layers.Transformer( num_attention_heads=num_attention_heads, intermediate_size=intermediate_size, intermediate_activation=activation, dropout_rate=dropout_rate, attention_dropout_rate=attention_dropout_rate, output_range=transformer_output_range, kernel_initializer=initializer, name='transformer/layer_%d' % i) self._transformer_layers.append(layer) data = layer([data, attention_mask]) encoder_outputs.append(data) first_token_tensor = ( tf.keras.layers.Lambda(lambda x: tf.squeeze(x[:, 0:1, :], axis=1))( encoder_outputs[-1])) self._pooler_layer = tf.keras.layers.Dense( units=hidden_size, activation='tanh', kernel_initializer=initializer, name='pooler_transform') cls_output = self._pooler_layer(first_token_tensor) if return_all_encoder_outputs: outputs = [encoder_outputs, cls_output] else: outputs = [encoder_outputs[-1], cls_output] super(TransformerEncoder, self).__init__( inputs=[word_ids, mask, type_ids], outputs=outputs, **kwargs) def get_embedding_table(self): return self._embedding_layer.embeddings def get_embedding_layer(self): return self._embedding_layer def get_config(self): return self._config_dict @property def transformer_layers(self): """List of Transformer layers in the encoder.""" return self._transformer_layers @property def pooler_layer(self): """The pooler dense layer after the transformer layers.""" return self._pooler_layer @classmethod def from_config(cls, config, custom_objects=None): return cls(**config)