# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Optimizer factory for vision tasks.""" from __future__ import absolute_import from __future__ import division # from __future__ import google_type_annotations from __future__ import print_function from absl import logging import tensorflow as tf import tensorflow_addons as tfa from typing import Any, Dict, Text, List from official.vision.image_classification import learning_rate from official.vision.image_classification.configs import base_configs # pylint: disable=protected-access class MovingAverage(tf.keras.optimizers.Optimizer): """Optimizer that computes a moving average of the variables. Empirically it has been found that using the moving average of the trained parameters of a deep network is better than using its trained parameters directly. This optimizer allows you to compute this moving average and swap the variables at save time so that any code outside of the training loop will use by default the average values instead of the original ones. Example of usage for training: ```python opt = tf.keras.optimizers.SGD(learning_rate) opt = MovingAverage(opt) opt.shadow_copy(model) ``` At test time, swap the shadow variables to evaluate on the averaged weights: ```python opt.swap_weights() # Test eval the model here opt.swap_weights() ``` """ def __init__(self, optimizer: tf.keras.optimizers.Optimizer, average_decay: float = 0.99, start_step: int = 0, dynamic_decay: bool = True, name: Text = 'moving_average', **kwargs): """Construct a new MovingAverage optimizer. Args: optimizer: `tf.keras.optimizers.Optimizer` that will be used to compute and apply gradients. average_decay: float. Decay to use to maintain the moving averages of trained variables. start_step: int. What step to start the moving average. dynamic_decay: bool. Whether to change the decay based on the number of optimizer updates. Decay will start at 0.1 and gradually increase up to `average_decay` after each optimizer update. This behavior is similar to `tf.train.ExponentialMovingAverage` in TF 1.x. name: Optional name for the operations created when applying gradients. Defaults to "moving_average". **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`, `decay`}. """ super(MovingAverage, self).__init__(name, **kwargs) self._optimizer = optimizer self._average_decay = average_decay self._start_step = tf.constant(start_step, tf.float32) self._dynamic_decay = dynamic_decay def shadow_copy(self, model: tf.keras.Model): """Creates shadow variables for the given model weights.""" for var in model.weights: self.add_slot(var, 'average', initializer='zeros') self._average_weights = [ self.get_slot(var, 'average') for var in model.weights ] self._model_weights = model.weights @property def has_shadow_copy(self): """Whether this optimizer has created shadow variables.""" return self._model_weights is not None def _create_slots(self, var_list): self._optimizer._create_slots(var_list=var_list) # pylint: disable=protected-access def apply_gradients(self, grads_and_vars, name: Text = None): result = self._optimizer.apply_gradients(grads_and_vars, name) self.update_average(self._optimizer.iterations) return result @tf.function def update_average(self, step: tf.Tensor): step = tf.cast(step, tf.float32) if step < self._start_step: decay = tf.constant(0., tf.float32) elif self._dynamic_decay: decay = step - self._start_step decay = tf.minimum(self._average_decay, (1. + decay) / (10. + decay)) else: decay = self._average_decay def _apply_moving(v_moving, v_normal): diff = v_moving - v_normal v_moving.assign_sub(tf.cast(1. - decay, v_moving.dtype) * diff) return v_moving def _update(strategy, v_moving_and_v_normal): for v_moving, v_normal in v_moving_and_v_normal: strategy.extended.update(v_moving, _apply_moving, args=(v_normal,)) ctx = tf.distribute.get_replica_context() return ctx.merge_call(_update, args=(zip(self._average_weights, self._model_weights),)) def swap_weights(self): """Swap the average and moving weights. This is a convenience method to allow one to evaluate the averaged weights at test time. Loads the weights stored in `self._average` into the model, keeping a copy of the original model weights. Swapping twice will return the original weights. """ if tf.distribute.in_cross_replica_context(): strategy = tf.distribute.get_strategy() strategy.run(self._swap_weights, args=()) else: raise ValueError('Swapping weights must occur under a ' 'tf.distribute.Strategy') @tf.function def _swap_weights(self): def fn_0(a, b): a.assign_add(b) return a def fn_1(b, a): b.assign(a - b) return b def fn_2(a, b): a.assign_sub(b) return a def swap(strategy, a_and_b): """Swap `a` and `b` and mirror to all devices.""" for a, b in a_and_b: strategy.extended.update(a, fn_0, args=(b,)) # a = a + b strategy.extended.update(b, fn_1, args=(a,)) # b = a - b strategy.extended.update(a, fn_2, args=(b,)) # a = a - b ctx = tf.distribute.get_replica_context() return ctx.merge_call( swap, args=(zip(self._average_weights, self._model_weights),)) def assign_average_vars(self, var_list: List[tf.Variable]): """Assign variables in var_list with their respective averages. Args: var_list: List of model variables to be assigned to their average. Returns: assign_op: The op corresponding to the assignment operation of variables to their average. """ assign_op = tf.group([ var.assign(self.get_slot(var, 'average')) for var in var_list if var.trainable ]) return assign_op def _create_hypers(self): self._optimizer._create_hypers() # pylint: disable=protected-access def _prepare(self, var_list): return self._optimizer._prepare(var_list=var_list) # pylint: disable=protected-access @property def iterations(self): return self._optimizer.iterations @iterations.setter def iterations(self, variable): self._optimizer.iterations = variable @property def weights(self): # return self._weights + self._optimizer.weights return self._optimizer.weights @property def lr(self): return self._optimizer._get_hyper('learning_rate') @lr.setter def lr(self, lr): self._optimizer._set_hyper('learning_rate', lr) @property def learning_rate(self): return self._optimizer._get_hyper('learning_rate') @learning_rate.setter def learning_rate(self, learning_rate): # pylint: disable=redefined-outer-name self._optimizer._set_hyper('learning_rate', learning_rate) def _resource_apply_dense(self, grad, var): return self._optimizer._resource_apply_dense(grad, var) def _resource_apply_sparse(self, grad, var, indices): return self._optimizer._resource_apply_sparse(grad, var, indices) def _resource_apply_sparse_duplicate_indices(self, grad, var, indices): return self._optimizer._resource_apply_sparse_duplicate_indices( grad, var, indices) def get_config(self): config = { 'optimizer': tf.keras.optimizers.serialize(self._optimizer), 'average_decay': self._average_decay, 'start_step': self._start_step, 'dynamic_decay': self._dynamic_decay, } base_config = super(MovingAverage, self).get_config() return dict(list(base_config.items()) + list(config.items())) @classmethod def from_config(cls, config, custom_objects=None): optimizer = tf.keras.optimizers.deserialize( config.pop('optimizer'), custom_objects=custom_objects, ) return cls(optimizer, **config) def build_optimizer( optimizer_name: Text, base_learning_rate: tf.keras.optimizers.schedules.LearningRateSchedule, params: Dict[Text, Any]): """Build the optimizer based on name. Args: optimizer_name: String representation of the optimizer name. Examples: sgd, momentum, rmsprop. base_learning_rate: `tf.keras.optimizers.schedules.LearningRateSchedule` base learning rate. params: String -> Any dictionary representing the optimizer params. This should contain optimizer specific parameters such as `base_learning_rate`, `decay`, etc. Returns: A tf.keras.Optimizer. Raises: ValueError if the provided optimizer_name is not supported. """ optimizer_name = optimizer_name.lower() logging.info('Building %s optimizer with params %s', optimizer_name, params) if optimizer_name == 'sgd': logging.info('Using SGD optimizer') nesterov = params.get('nesterov', False) optimizer = tf.keras.optimizers.SGD(learning_rate=base_learning_rate, nesterov=nesterov) elif optimizer_name == 'momentum': logging.info('Using momentum optimizer') nesterov = params.get('nesterov', False) optimizer = tf.keras.optimizers.SGD(learning_rate=base_learning_rate, momentum=params['momentum'], nesterov=nesterov) elif optimizer_name == 'rmsprop': logging.info('Using RMSProp') rho = params.get('decay', None) or params.get('rho', 0.9) momentum = params.get('momentum', 0.9) epsilon = params.get('epsilon', 1e-07) optimizer = tf.keras.optimizers.RMSprop(learning_rate=base_learning_rate, rho=rho, momentum=momentum, epsilon=epsilon) elif optimizer_name == 'adam': logging.info('Using Adam') beta_1 = params.get('beta_1', 0.9) beta_2 = params.get('beta_2', 0.999) epsilon = params.get('epsilon', 1e-07) optimizer = tf.keras.optimizers.Adam(learning_rate=base_learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon) elif optimizer_name == 'adamw': logging.info('Using AdamW') weight_decay = params.get('weight_decay', 0.01) beta_1 = params.get('beta_1', 0.9) beta_2 = params.get('beta_2', 0.999) epsilon = params.get('epsilon', 1e-07) optimizer = tfa.optimizers.AdamW(weight_decay=weight_decay, learning_rate=base_learning_rate, beta_1=beta_1, beta_2=beta_2, epsilon=epsilon) else: raise ValueError('Unknown optimizer %s' % optimizer_name) if params.get('lookahead', None): logging.info('Using lookahead optimizer.') optimizer = tfa.optimizers.Lookahead(optimizer) # Moving average should be applied last, as it's applied at test time moving_average_decay = params.get('moving_average_decay', 0.) if moving_average_decay is not None and moving_average_decay > 0.: logging.info('Including moving average decay.') optimizer = MovingAverage( optimizer, average_decay=moving_average_decay) return optimizer def build_learning_rate(params: base_configs.LearningRateConfig, batch_size: int = None, train_epochs: int = None, train_steps: int = None): """Build the learning rate given the provided configuration.""" decay_type = params.name base_lr = params.initial_lr decay_rate = params.decay_rate if params.decay_epochs is not None: decay_steps = params.decay_epochs * train_steps else: decay_steps = 0 if params.warmup_epochs is not None: warmup_steps = params.warmup_epochs * train_steps else: warmup_steps = 0 lr_multiplier = params.scale_by_batch_size if lr_multiplier and lr_multiplier > 0: # Scale the learning rate based on the batch size and a multiplier base_lr *= lr_multiplier * batch_size logging.info('Scaling the learning rate based on the batch size ' 'multiplier. New base_lr: %f', base_lr) if decay_type == 'exponential': logging.info('Using exponential learning rate with: ' 'initial_learning_rate: %f, decay_steps: %d, ' 'decay_rate: %f', base_lr, decay_steps, decay_rate) lr = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=base_lr, decay_steps=decay_steps, decay_rate=decay_rate, staircase=params.staircase) elif decay_type == 'piecewise_constant_with_warmup': logging.info('Using Piecewise constant decay with warmup. ' 'Parameters: batch_size: %d, epoch_size: %d, ' 'warmup_epochs: %d, boundaries: %s, multipliers: %s', batch_size, params.examples_per_epoch, params.warmup_epochs, params.boundaries, params.multipliers) lr = learning_rate.PiecewiseConstantDecayWithWarmup( batch_size=batch_size, epoch_size=params.examples_per_epoch, warmup_epochs=params.warmup_epochs, boundaries=params.boundaries, multipliers=params.multipliers) elif decay_type == 'cosine_with_warmup': lr = learning_rate.CosineDecayWithWarmup( batch_size=batch_size, total_steps=train_epochs * train_steps, warmup_steps=warmup_steps) if warmup_steps > 0: if decay_type not in [ 'piecewise_constant_with_warmup', 'cosine_with_warmup' ]: logging.info('Applying %d warmup steps to the learning rate', warmup_steps) lr = learning_rate.WarmupDecaySchedule(lr, warmup_steps) return lr