# Copyright 2018 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library which creates datasets.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from datasets import imagenet_input from datasets import tiny_imagenet_input def get_dataset(dataset_name, split, batch_size, image_size, is_training): """Returns dataset. Args: dataset_name: name of the dataset, "imagenet" or "tiny_imagenet". split: name of the split, "train" or "validation". batch_size: size of the minibatch. image_size: size of the one side of the image. Output images will be resized to square shape image_size*image_size. is_training: if True then training preprocessing is done, otherwise eval preprocessing is done. Raises: ValueError: if dataset_name is invalid. Returns: dataset: instance of tf.data.Dataset with the dataset. num_examples: number of examples in given split of the dataset. num_classes: number of classes in the dataset. bounds: tuple with bounds of image values. All returned image pixels are between bounds[0] and bounds[1]. """ if dataset_name == 'tiny_imagenet': dataset = tiny_imagenet_input.tiny_imagenet_input( split, batch_size, image_size, is_training) num_examples = tiny_imagenet_input.num_examples_per_epoch(split) num_classes = 200 bounds = (-1, 1) elif dataset_name == 'imagenet': dataset = imagenet_input.imagenet_input( split, batch_size, image_size, is_training) num_examples = imagenet_input.num_examples_per_epoch(split) num_classes = 1001 bounds = (-1, 1) else: raise ValueError('Invalid dataset %s' % dataset_name) return dataset, num_examples, num_classes, bounds