# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for grl_ops.""" #from models.domain_adaptation.domain_separation import grl_op_grads # pylint: disable=unused-import #from models.domain_adaptation.domain_separation import grl_op_shapes # pylint: disable=unused-import import tensorflow as tf import grl_op_grads import grl_ops FLAGS = tf.app.flags.FLAGS class GRLOpsTest(tf.test.TestCase): def testGradientReversalOp(self): with tf.Graph().as_default(): with self.test_session(): # Test that in forward prop, gradient reversal op acts as the # identity operation. examples = tf.constant([5.0, 4.0, 3.0, 2.0, 1.0]) output = grl_ops.gradient_reversal(examples) expected_output = examples self.assertAllEqual(output.eval(), expected_output.eval()) # Test that shape inference works as expected. self.assertAllEqual(output.get_shape(), expected_output.get_shape()) # Test that in backward prop, gradient reversal op multiplies # gradients by -1. examples = tf.constant([[1.0]]) w = tf.get_variable(name='w', shape=[1, 1]) b = tf.get_variable(name='b', shape=[1]) init_op = tf.global_variables_initializer() init_op.run() features = tf.nn.xw_plus_b(examples, w, b) # Construct two outputs: features layer passes directly to output1, but # features layer passes through a gradient reversal layer before # reaching output2. output1 = features output2 = grl_ops.gradient_reversal(features) gold = tf.constant([1.0]) loss1 = gold - output1 loss2 = gold - output2 opt = tf.train.GradientDescentOptimizer(learning_rate=0.01) grads_and_vars_1 = opt.compute_gradients(loss1, tf.trainable_variables()) grads_and_vars_2 = opt.compute_gradients(loss2, tf.trainable_variables()) self.assertAllEqual(len(grads_and_vars_1), len(grads_and_vars_2)) for i in range(len(grads_and_vars_1)): g1 = grads_and_vars_1[i][0] g2 = grads_and_vars_2[i][0] # Verify that gradients of loss1 are the negative of gradients of # loss2. self.assertAllEqual(tf.negative(g1).eval(), g2.eval()) if __name__ == '__main__': tf.test.main()