# Copyright 2016 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for DSN losses.""" from functools import partial import numpy as np import tensorflow as tf import losses import utils def MaximumMeanDiscrepancySlow(x, y, sigmas): num_samples = x.get_shape().as_list()[0] def AverageGaussianKernel(x, y, sigmas): result = 0 for sigma in sigmas: dist = tf.reduce_sum(tf.square(x - y)) result += tf.exp((-1.0 / (2.0 * sigma)) * dist) return result / num_samples**2 total = 0 for i in range(num_samples): for j in range(num_samples): total += AverageGaussianKernel(x[i, :], x[j, :], sigmas) total += AverageGaussianKernel(y[i, :], y[j, :], sigmas) total += -2 * AverageGaussianKernel(x[i, :], y[j, :], sigmas) return total class LogQuaternionLossTest(tf.test.TestCase): def test_log_quaternion_loss_batch(self): with self.test_session(): predictions = tf.random_uniform((10, 4), seed=1) predictions = tf.nn.l2_normalize(predictions, 1) labels = tf.random_uniform((10, 4), seed=1) labels = tf.nn.l2_normalize(labels, 1) params = {'batch_size': 10, 'use_logging': False} x = losses.log_quaternion_loss_batch(predictions, labels, params) self.assertTrue(((10,) == tf.shape(x).eval()).all()) class MaximumMeanDiscrepancyTest(tf.test.TestCase): def test_mmd_name(self): with self.test_session(): x = tf.random_uniform((2, 3), seed=1) kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) loss = losses.maximum_mean_discrepancy(x, x, kernel) self.assertEquals(loss.op.name, 'MaximumMeanDiscrepancy/value') def test_mmd_is_zero_when_inputs_are_same(self): with self.test_session(): x = tf.random_uniform((2, 3), seed=1) kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) self.assertEquals(0, losses.maximum_mean_discrepancy(x, x, kernel).eval()) def test_fast_mmd_is_similar_to_slow_mmd(self): with self.test_session(): x = tf.constant(np.random.normal(size=(2, 3)), tf.float32) y = tf.constant(np.random.rand(2, 3), tf.float32) cost_old = MaximumMeanDiscrepancySlow(x, y, [1.]).eval() kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.])) cost_new = losses.maximum_mean_discrepancy(x, y, kernel).eval() self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) def test_multiple_sigmas(self): with self.test_session(): x = tf.constant(np.random.normal(size=(2, 3)), tf.float32) y = tf.constant(np.random.rand(2, 3), tf.float32) sigmas = tf.constant([2., 5., 10, 20, 30]) kernel = partial(utils.gaussian_kernel_matrix, sigmas=sigmas) cost_old = MaximumMeanDiscrepancySlow(x, y, [2., 5., 10, 20, 30]).eval() cost_new = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval() self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) def test_mmd_is_zero_when_distributions_are_same(self): with self.test_session(): x = tf.random_uniform((1000, 10), seed=1) y = tf.random_uniform((1000, 10), seed=3) kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([100.])) loss = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval() self.assertAlmostEqual(0, loss, delta=1e-4) if __name__ == '__main__': tf.test.main()