# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """An example script to generate a tfrecord file from a folder containing the renderings. Example usage: python gen_tfrecords.py --input=FOLDER --output=output.tfrecord """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os from scipy import misc import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string("input", "", "Input folder containing images") tf.app.flags.DEFINE_string("output", "", "Output tfrecord.") def get_matrix(lines): return np.array([[float(y) for y in x.strip().split(" ")] for x in lines]) def read_model_view_matrices(filename): with open(filename, "r") as f: lines = f.readlines() return get_matrix(lines[:4]), get_matrix(lines[4:]) def bytes_feature(values): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values])) def generate(): with tf.python_io.TFRecordWriter(FLAGS.output) as tfrecord_writer: with tf.Graph().as_default(): im0 = tf.placeholder(dtype=tf.uint8) im1 = tf.placeholder(dtype=tf.uint8) encoded0 = tf.image.encode_png(im0) encoded1 = tf.image.encode_png(im1) with tf.Session() as sess: count = 0 indir = FLAGS.input + "/" while tf.gfile.Exists(indir + "%06d.txt" % count): print("saving %06d" % count) image0 = misc.imread(indir + "%06d.png" % (count * 2)) image1 = misc.imread(indir + "%06d.png" % (count * 2 + 1)) mat0, mat1 = read_model_view_matrices(indir + "%06d.txt" % count) mati0 = np.linalg.inv(mat0).flatten() mati1 = np.linalg.inv(mat1).flatten() mat0 = mat0.flatten() mat1 = mat1.flatten() st0, st1 = sess.run([encoded0, encoded1], feed_dict={im0: image0, im1: image1}) example = tf.train.Example(features=tf.train.Features(feature={ 'img0': bytes_feature(st0), 'img1': bytes_feature(st1), 'mv0': tf.train.Feature( float_list=tf.train.FloatList(value=mat0)), 'mvi0': tf.train.Feature( float_list=tf.train.FloatList(value=mati0)), 'mv1': tf.train.Feature( float_list=tf.train.FloatList(value=mat1)), 'mvi1': tf.train.Feature( float_list=tf.train.FloatList(value=mati1)), })) tfrecord_writer.write(example.SerializeToString()) count += 1 def main(argv): del argv generate() if __name__ == "__main__": tf.app.run()