# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.utils.config_util.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tensorflow.compat.v1 as tf from google.protobuf import text_format from lstm_object_detection.protos import pipeline_pb2 as internal_pipeline_pb2 from lstm_object_detection.utils import config_util from object_detection.protos import pipeline_pb2 def _write_config(config, config_path): """Writes a config object to disk.""" config_text = text_format.MessageToString(config) with tf.gfile.Open(config_path, "wb") as f: f.write(config_text) class ConfigUtilTest(tf.test.TestCase): def test_get_configs_from_pipeline_file(self): """Test that proto configs can be read from pipeline config file.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 pipeline_config.Extensions[ internal_pipeline_pb2.lstm_model].train_unroll_length = 5 pipeline_config.Extensions[ internal_pipeline_pb2.lstm_model].eval_unroll_length = 10 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) self.assertProtoEquals(pipeline_config.model, configs["model"]) self.assertProtoEquals(pipeline_config.train_config, configs["train_config"]) self.assertProtoEquals(pipeline_config.train_input_reader, configs["train_input_config"]) self.assertProtoEquals(pipeline_config.eval_config, configs["eval_config"]) self.assertProtoEquals(pipeline_config.eval_input_reader, configs["eval_input_configs"]) self.assertProtoEquals( pipeline_config.Extensions[internal_pipeline_pb2.lstm_model], configs["lstm_model"]) def test_create_pipeline_proto_from_configs(self): """Tests that proto can be reconstructed from configs dictionary.""" pipeline_config_path = os.path.join(self.get_temp_dir(), "pipeline.config") pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() pipeline_config.model.ssd.num_classes = 10 pipeline_config.train_config.batch_size = 32 pipeline_config.train_input_reader.label_map_path = "path/to/label_map" pipeline_config.eval_config.num_examples = 20 pipeline_config.eval_input_reader.add().queue_capacity = 100 pipeline_config.Extensions[ internal_pipeline_pb2.lstm_model].train_unroll_length = 5 pipeline_config.Extensions[ internal_pipeline_pb2.lstm_model].eval_unroll_length = 10 _write_config(pipeline_config, pipeline_config_path) configs = config_util.get_configs_from_pipeline_file(pipeline_config_path) pipeline_config_reconstructed = ( config_util.create_pipeline_proto_from_configs(configs)) self.assertEqual(pipeline_config, pipeline_config_reconstructed) if __name__ == "__main__": tf.test.main()