# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for optimizer_builder.""" import unittest import tensorflow.compat.v1 as tf from google.protobuf import text_format from object_detection.builders import optimizer_builder from object_detection.protos import optimizer_pb2 from object_detection.utils import tf_version @unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.') class OptimizerBuilderV2Test(tf.test.TestCase): """Test building optimizers in V2 mode.""" def testBuildRMSPropOptimizer(self): optimizer_text_proto = """ rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertIsInstance(optimizer, tf.keras.optimizers.RMSprop) def testBuildMomentumOptimizer(self): optimizer_text_proto = """ momentum_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.001 } } momentum_optimizer_value: 0.99 } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertIsInstance(optimizer, tf.keras.optimizers.SGD) def testBuildAdamOptimizer(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: false """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) optimizer, _ = optimizer_builder.build(optimizer_proto) self.assertIsInstance(optimizer, tf.keras.optimizers.Adam) def testMovingAverageOptimizerUnsupported(self): optimizer_text_proto = """ adam_optimizer: { learning_rate: { constant_learning_rate { learning_rate: 0.002 } } } use_moving_average: True """ optimizer_proto = optimizer_pb2.Optimizer() text_format.Merge(optimizer_text_proto, optimizer_proto) with self.assertRaises(ValueError): optimizer_builder.build(optimizer_proto) if __name__ == '__main__': tf.enable_v2_behavior() tf.test.main()