# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for post_processing_builder.""" import tensorflow.compat.v1 as tf from google.protobuf import text_format from object_detection.builders import post_processing_builder from object_detection.protos import post_processing_pb2 from object_detection.utils import test_case class PostProcessingBuilderTest(test_case.TestCase): def test_build_non_max_suppressor_with_correct_parameters(self): post_processing_text_proto = """ batch_non_max_suppression { score_threshold: 0.7 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 300 soft_nms_sigma: 0.4 } """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) non_max_suppressor, _ = post_processing_builder.build( post_processing_config) self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100) self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) self.assertAlmostEqual(non_max_suppressor.keywords['soft_nms_sigma'], 0.4) def test_build_non_max_suppressor_with_correct_parameters_classagnostic_nms( self): post_processing_text_proto = """ batch_non_max_suppression { score_threshold: 0.7 iou_threshold: 0.6 max_detections_per_class: 10 max_total_detections: 300 use_class_agnostic_nms: True max_classes_per_detection: 1 } """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) non_max_suppressor, _ = post_processing_builder.build( post_processing_config) self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 10) self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300) self.assertEqual(non_max_suppressor.keywords['max_classes_per_detection'], 1) self.assertEqual(non_max_suppressor.keywords['use_class_agnostic_nms'], True) self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7) self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6) def test_build_identity_score_converter(self): post_processing_text_proto = """ score_converter: IDENTITY """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build( post_processing_config) self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') def graph_fn(): inputs = tf.constant([1, 1], tf.float32) outputs = score_converter(inputs) return outputs converted_scores = self.execute_cpu(graph_fn, []) self.assertAllClose(converted_scores, [1, 1]) def test_build_identity_score_converter_with_logit_scale(self): post_processing_text_proto = """ score_converter: IDENTITY logit_scale: 2.0 """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build(post_processing_config) self.assertEqual(score_converter.__name__, 'identity_with_logit_scale') def graph_fn(): inputs = tf.constant([1, 1], tf.float32) outputs = score_converter(inputs) return outputs converted_scores = self.execute_cpu(graph_fn, []) self.assertAllClose(converted_scores, [.5, .5]) def test_build_sigmoid_score_converter(self): post_processing_text_proto = """ score_converter: SIGMOID """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build(post_processing_config) self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale') def test_build_softmax_score_converter(self): post_processing_text_proto = """ score_converter: SOFTMAX """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build(post_processing_config) self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') def test_build_softmax_score_converter_with_temperature(self): post_processing_text_proto = """ score_converter: SOFTMAX logit_scale: 2.0 """ post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, score_converter = post_processing_builder.build(post_processing_config) self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale') def test_build_calibrator_with_nonempty_config(self): """Test that identity function used when no calibration_config specified.""" # Calibration config maps all scores to 0.5. post_processing_text_proto = """ score_converter: SOFTMAX calibration_config { function_approximation { x_y_pairs { x_y_pair { x: 0.0 y: 0.5 } x_y_pair { x: 1.0 y: 0.5 }}}}""" post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, calibrated_score_conversion_fn = post_processing_builder.build( post_processing_config) self.assertEqual(calibrated_score_conversion_fn.__name__, 'calibrate_with_function_approximation') def graph_fn(): input_scores = tf.constant([1, 1], tf.float32) outputs = calibrated_score_conversion_fn(input_scores) return outputs calibrated_scores = self.execute_cpu(graph_fn, []) self.assertAllClose(calibrated_scores, [0.5, 0.5]) def test_build_temperature_scaling_calibrator(self): post_processing_text_proto = """ score_converter: SOFTMAX calibration_config { temperature_scaling_calibration { scaler: 2.0 }}""" post_processing_config = post_processing_pb2.PostProcessing() text_format.Merge(post_processing_text_proto, post_processing_config) _, calibrated_score_conversion_fn = post_processing_builder.build( post_processing_config) self.assertEqual(calibrated_score_conversion_fn.__name__, 'calibrate_with_temperature_scaling_calibration') def graph_fn(): input_scores = tf.constant([1, 1], tf.float32) outputs = calibrated_score_conversion_fn(input_scores) return outputs calibrated_scores = self.execute_cpu(graph_fn, []) self.assertAllClose(calibrated_scores, [0.5, 0.5]) if __name__ == '__main__': tf.test.main()