# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.core.bipartite_matcher.""" import unittest import numpy as np import tensorflow.compat.v1 as tf from object_detection.utils import test_case from object_detection.utils import tf_version if tf_version.is_tf1(): from object_detection.matchers import bipartite_matcher # pylint: disable=g-import-not-at-top @unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.') class GreedyBipartiteMatcherTest(test_case.TestCase): def test_get_expected_matches_when_all_rows_are_valid(self): similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]], dtype=np.float32) valid_rows = np.ones([2], dtype=np.bool) expected_match_results = [-1, 1, 0] def graph_fn(similarity_matrix, valid_rows): matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, valid_rows=valid_rows) return match._match_results match_results_out = self.execute(graph_fn, [similarity_matrix, valid_rows]) self.assertAllEqual(match_results_out, expected_match_results) def test_get_expected_matches_with_all_rows_be_default(self): similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]], dtype=np.float32) expected_match_results = [-1, 1, 0] def graph_fn(similarity_matrix): matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix) return match._match_results match_results_out = self.execute(graph_fn, [similarity_matrix]) self.assertAllEqual(match_results_out, expected_match_results) def test_get_no_matches_with_zero_valid_rows(self): similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]], dtype=np.float32) valid_rows = np.zeros([2], dtype=np.bool) expected_match_results = [-1, -1, -1] def graph_fn(similarity_matrix, valid_rows): matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, valid_rows=valid_rows) return match._match_results match_results_out = self.execute(graph_fn, [similarity_matrix, valid_rows]) self.assertAllEqual(match_results_out, expected_match_results) def test_get_expected_matches_with_only_one_valid_row(self): similarity_matrix = np.array([[0.50, 0.1, 0.8], [0.15, 0.2, 0.3]], dtype=np.float32) valid_rows = np.array([True, False], dtype=np.bool) expected_match_results = [-1, -1, 0] def graph_fn(similarity_matrix, valid_rows): matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, valid_rows=valid_rows) return match._match_results match_results_out = self.execute(graph_fn, [similarity_matrix, valid_rows]) self.assertAllEqual(match_results_out, expected_match_results) def test_get_expected_matches_with_only_one_valid_row_at_bottom(self): similarity_matrix = np.array([[0.15, 0.2, 0.3], [0.50, 0.1, 0.8]], dtype=np.float32) valid_rows = np.array([False, True], dtype=np.bool) expected_match_results = [-1, -1, 0] def graph_fn(similarity_matrix, valid_rows): matcher = bipartite_matcher.GreedyBipartiteMatcher() match = matcher.match(similarity_matrix, valid_rows=valid_rows) return match._match_results match_results_out = self.execute(graph_fn, [similarity_matrix, valid_rows]) self.assertAllEqual(match_results_out, expected_match_results) if __name__ == '__main__': tf.test.main()