# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Factory module for different encoder/decoder network models.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from nets import ptn_encoder from nets import ptn_im_decoder from nets import ptn_rotator _NAME_TO_NETS = { 'ptn_encoder': ptn_encoder, 'ptn_rotator': ptn_rotator, 'ptn_im_decoder': ptn_im_decoder, } def _get_network(name): """Gets a single network component.""" if name not in _NAME_TO_NETS: raise ValueError('Network name [%s] not recognized.' % name) return _NAME_TO_NETS[name].model def get(params, is_training=False, reuse=False): """Factory function to retrieve a network model. Args: params: Different parameters used througout ptn, typically FLAGS (dict) is_training: Set to True if while training (boolean) reuse: Set as True if either using a pre-trained model or in the training loop while the graph has already been built (boolean) Returns: Model function for network (inputs to outputs) """ def model(inputs): """Model function corresponding to a specific network architecture.""" outputs = {} # First, build the encoder. encoder_fn = _get_network(params.encoder_name) with tf.variable_scope('encoder', reuse=reuse): # Produces id/pose units features = encoder_fn(inputs['images_0'], params, is_training) outputs['ids'] = features['ids'] outputs['poses_0'] = features['poses'] # Second, build the rotator and decoder. rotator_fn = _get_network(params.rotator_name) with tf.variable_scope('rotator', reuse=reuse): outputs['poses_1'] = rotator_fn(outputs['poses_0'], inputs['actions'], params, is_training) decoder_fn = _get_network(params.decoder_name) with tf.variable_scope('decoder', reuse=reuse): dec_output = decoder_fn(outputs['ids'], outputs['poses_1'], params, is_training) outputs['images_1'] = dec_output['images'] outputs['masks_1'] = dec_output['masks'] # Third, build the recurrent connection for k in range(1, params.step_size): with tf.variable_scope('rotator', reuse=True): outputs['poses_%d' % (k + 1)] = rotator_fn( outputs['poses_%d' % k], inputs['actions'], params, is_training) with tf.variable_scope('decoder', reuse=True): dec_output = decoder_fn(outputs['ids'], outputs['poses_%d' % (k + 1)], params, is_training) outputs['images_%d' % (k + 1)] = dec_output['images'] outputs['masks_%d' % (k + 1)] = dec_output['masks'] return outputs return model