Spaces:
Build error
Build error
File size: 20,327 Bytes
0106a28 516aa57 0106a28 8cbc2d5 0106a28 8cbc2d5 ae2ce2b 0106a28 8cbc2d5 c7088d6 0106a28 a35567d 0106a28 b478431 0106a28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
import os
import re
import random
import pandas as pd
import gradio as gr
from gradio_pdf import PDF
from googleapiclient.discovery import build
from googleapiclient.http import MediaIoBaseDownload
from google.oauth2 import service_account
from io import BytesIO
import tempfile
import markdown
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer
from supabase import create_client
from pydantic import BaseModel, Field
from phi.agent import Agent
from phi.model.groq import Groq
import gradio as gr
import json
# Environment variables for sensitive data
SUPABASE_URL = os.getenv("SUPABASE_URL", )
SUPABASE_KEY = os.getenv("SUPABASE_KEY", )
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
VALID_USERNAME=os.getenv("VALID_USERNAME")
VALID_PASSWORD=os.getenv("VALID_PASSWORD")
# Google Drive API credentials
SCOPES = ["https://www.googleapis.com/auth/drive"]
SERVICE_ACCOUNT_FILE = os.getenv("SERVICE_ACCOUNT_FILE") # Store in HF Space storage
if not SERVICE_ACCOUNT_FILE:
raise ValueError("GOOGLE_CREDENTIALS environment variable not set")
# Parse the JSON string into a Python dictionary
credentials_info = json.loads(SERVICE_ACCOUNT_FILE)
# Create credentials from the JSON content
creds = service_account.Credentials.from_service_account_info(
credentials_info,
scopes=SCOPES
)
#creds = service_account.Credentials.from_service_account_file(SERVICE_ACCOUNT_FILE, scopes=SCOPES)
drive_service = build("drive", "v3", credentials=creds)
# Pydantic model for column weights
class ColumnWeights(BaseModel):
report_no: float = Field(0.0, description="Weight for report number")
date_of_issue: float = Field(0.0, description="Weight for issue date")
subject: float = Field(0.0, description="Weight for subject")
short_summary: float = Field(0.0, description="Weight for short summary")
report_category: float = Field(0.0, description="Weight for report category")
subject_classification: float = Field(0.0, description="Weight for subject classification")
cth_cti: float = Field(0.0, description="Weight for CTH/CTI")
notification_number: float = Field(0.0, description="Weight for notification number")
notification_type: float = Field(0.0, description="Weight for notification type")
issue_year: float = Field(0.0, description="Weight for issue year")
def normalize_weights(self):
total_weight = sum([getattr(self, field) for field in self.__fields__])
if total_weight == 0:
raise ValueError("Total weight cannot be zero.")
factor = 10 / total_weight
for field in self.__fields__:
setattr(self, field, round(getattr(self, field) * factor, 2))
# Weight Assigner Agent
weight_assigner = Agent(
name="Weight Assigner",
role="Assigns dynamic weights to columns based on the query.",
instructions=[
"Analyze the query and assign weights to the relevant columns.",
"Focus on the keywords in the query to determine which columns are most relevant.",
"For queries related to Chapter, CTH, CTI, tariff heading give more weightage to cth_cti column",
"For queries related to product name, item description give more weightage to short_summary",
"Report category tells the report is related to export or import only",
"For any queries related to risk types such as overvaluation, misclassification, BCD, IGST, CVD duty evasion etc., give additional weightage to subject_classification",
"Ensure the total weight sums to approximately 10 (decimal values allowed). Minimum weight value for a column should be 0.5 and round to single decimal place"
],
model=Groq(id="deepseek-r1-distill-llama-70b"),
response_model=ColumnWeights,
markdown=True,
debug_mode=True,
show_tool_calls=True,
monitoring=True
)
# Supabase data fetch
def fetch_data_from_supabase():
supabase1 = create_client(SUPABASE_URL, SUPABASE_KEY)
response = supabase1.table("risk_report_embeddings").select("*").execute()
data = response.data
if not data:
raise ValueError("No data found in the Supabase table.")
return pd.DataFrame(data)
# Relevant Reports Selector
class RelevantReports(BaseModel):
report_numbers: list[str] = Field(..., description="List of report numbers extracted (report_no)")
relevant_report_selector = Agent(
name="Relevant Report Selector",
role="Selects the reports after dropping not related reports based on the query and provided data.",
instructions=[
"Analyze the query and given reports and give more importance to products and CTH/CTI.",
"Drop the reports that are not fairly related to the query.",
"Extract Report numbers, generally shown against the field 'report_no' in the given data, not against 'id'"
],
model=Groq(id="deepseek-r1-distill-llama-70b"),
response_model=RelevantReports,
markdown=True,
debug_mode=True,
show_tool_calls=True,
monitoring=True
)
# Chatbot Agent
chat_agent = Agent(
name="NCTCGpt",
role="You are a Knowledge Management System Chat Assistant answering questions only based on NCTC Risk Revenue Reports on Revenue Risks.",
instructions=[
"Your goal is to provide a professional and detailed answer to the given query based on NCTC risk revenue reports mentioned in the context. If no reports is given in CONTEXT, mention no risk reports found and dont try to give answer on ur own",
"The report should be in proper markdown and nicely formatted with headings and subheadings.",
"If more than one report matches the queries, discuss the relevance of each report one by one.",
"If there are no reports given in the context of the prompt, mention there is no Risk report found related to this query from repository ",
"Cite the report numbers with the date of issue if risk reports are found .report number are against report_no of format (12/2021-22) ",
"CTI/CTH refers to WCO HSN codes of 8 digits which follow a system of reference. e.g., 84012000 - first 2 digits indicate Chapter 84, 4 digits - 8401 indicate Heading, 6 digits - 840120 indicate subheading, 8 digits fully indicate an item."
],
model=Groq(id="deepseek-r1-distill-llama-70b"),
stream=True,
markdown=True,
debug_mode=True,
show_tool_calls=True,
monitoring=True
)
# Main query processing pipeline
def process_query(query, model):
gr.Info('Fetching relevant Risk reports from repository...')
weights_response = weight_assigner.run(query).content
weights_response.normalize_weights()
weights = {field: getattr(weights_response, field) for field in weights_response.__fields__}
df = fetch_data_from_supabase()
metadata_cols = [col for col in df.columns if col != 'embedding']
query_embedding = model.encode(query.lower().strip())
gr.Info('Searching the knowledge base ...')
scores = []
for i in range(len(df)):
embeddings_dict = df['embedding'][i]
final_score = 0
for col, weight in weights.items():
if col not in embeddings_dict:
continue
col_embedding = embeddings_dict[col]
if np.all(col_embedding == 0):
continue
similarity = cosine_similarity([query_embedding], [col_embedding])[0][0]
final_score += weight * similarity
scores.append(final_score)
df['relevance_score'] = scores
df = df.sort_values(by='relevance_score', ascending=False)
top_n = 15
prompt_df = df[[col for col in metadata_cols if col != 'id']].copy()
top_n_rows = prompt_df.head(top_n)
markdown_prompt = f"Query: {query}\n\nFind Top Relevant Reports from below reports to answer above query and return list of their report_no:\n\n"
for row in top_n_rows.to_dict(orient="records"):
markdown_prompt += f"**Report**:\n"
for key, value in row.items():
markdown_prompt += f"- {key}: {value}\n"
markdown_prompt += "\n"
agent_response = relevant_report_selector.run(markdown_prompt)
relevant_report_numbers = agent_response.content.report_numbers
gr.Info('Agent analysing Relevancy of fetched reports..')
selected_rows = prompt_df[prompt_df['report_no'].isin(relevant_report_numbers)]
top_n_data = selected_rows.to_dict(orient="records")
markdown_prompt = f"Query: {query}\n\nUse the below context to answer the question ,\nCONTEXT : \n\n"
for row in top_n_data:
markdown_prompt += f"**Report**:\n"
for key, value in row.items():
markdown_prompt += f"- {key}: {value}\n"
markdown_prompt += "\n"
gr.Info('Almost over..Chatbot Agent pitches in...')
chatbot_response = chat_agent.run(markdown_prompt)
return chatbot_response.content, relevant_report_numbers
# Google Drive PDF download
def download_pdf_from_drive(file_id):
if file_id == "N/A":
return None
try:
request = drive_service.files().get_media(fileId=file_id)
file_content = BytesIO()
downloader = MediaIoBaseDownload(file_content, request)
done = False
while not done:
status, done = downloader.next_chunk()
temp_dir = tempfile.mkdtemp()
temp_file_path = os.path.join(temp_dir, f"{file_id}.pdf")
with open(temp_file_path, "wb") as temp_file:
temp_file.write(file_content.getvalue())
return temp_file_path
except Exception as e:
print(f"Error downloading file: {e}")
return None
# Filtered DataFrame for report details
def filtered_df(report_no):
filtered_data = df_filtered[df_filtered['report_no'] == report_no]
if filtered_data.empty:
return ("<div style='text-align:center; padding:20px; background-color:#F9FAFB; border:1px solid #E5E7EB; border-radius:8px;'>No data found for the selected Report No.</div>", "N/A")
row = filtered_data.iloc[0]
html_content = """
<div style='padding:40px; background-color:#FFFFFF; border:1px solid #E5E7EB; border-radius:12px; box-shadow:0 4px 6px rgba(0,0,0,0.1);'>
<h1 style='color:#1E3A8A; text-align:center; margin-bottom:30px;'>Report Details</h1>
"""
fields_to_display = {
"Report Number": "report_no",
"Report Issue Date": "date_of_issue",
"Subject": "subject",
"Short Summary": "short_summary",
"Total Assessible Value": "total_assessible_value",
"Total Differential Duty Involved": "total_revenue_difference",
"Total Transactions (Approx)": "total_transactions",
"Total Entities Involved": "total_importers",
"Report Category": "report_category",
"Report Classification": "subject_classification",
"CTH/CTI Involved": "cth_cti",
"Notifications Involved": "notification_number",
"Notification Type": "notification_type",
"Notification Date": "notification_date",
}
for field_name, column in fields_to_display.items():
value = row[column] if column in row.index and pd.notna(row[column]) else "N/A"
html_content += f"""
<div style='margin-bottom:15px;'>
<h4 style='color:#0F766E; font-weight:bold; margin-bottom:5px;'>{field_name}</h4>
<p style='font-size:16px; color:#374151; margin:0;'>{value}</p>
</div>
"""
html_content += "</div>"
file_id = row.get("file_id", "N/A")
return html_content, file_id
def update_report_and_pdf(report_no):
html_content, file_id = filtered_df(report_no)
google_drive_link = f"[Open in Google Drive](https://drive.google.com/file/d/{file_id}/view)" if file_id != "N/A" else "File ID not available"
pdf_path = download_pdf_from_drive(file_id)
return html_content, google_drive_link, pdf_path
# Login authentication
def authenticate_user(username, password):
return username == VALID_USERNAME and password == VALID_PASSWORD
def login_action(username, password):
if authenticate_user(username, password):
return gr.update(visible=False), gr.update(visible=True), gr.update(value="", visible=False)
return gr.update(visible=True), gr.update(visible=False), gr.update(value="β Invalid credentials. Try again.", visible=True)
# Load data and model
df = fetch_data_from_supabase()
model = SentenceTransformer('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
df_filtered = df.drop(columns=['full ninety'], errors='ignore')
df_filtered['total_assessible_value'] = pd.to_numeric(df_filtered['total_assessible_value'], errors='coerce')
df_filtered['total_revenue_difference'] = pd.to_numeric(df_filtered['total_revenue_difference'], errors='coerce')
df_filtered['issue_year'] = df_filtered['issue_year'].astype(str).str.split('.').str[0]
df_filtered = df_filtered[df_filtered["issue_year"] != '0']
df_filtered = df_filtered[df_filtered["subject_classification"] != "0"]
df_filtered = df_filtered[df_filtered["report_category"] != "0"]
# Gradio interface
with gr.Blocks(css=".gr-button {background-color: #1E3A8A; color: white;}") as demo:
with gr.Column(visible=True) as login_section:
gr.HTML("""
<div style='text-align:center; padding: 30px 0;'>
<h1 style='font-size: 2.5em; color:#1E3A8A; font-weight: bold;'>NCTC AI Assisted Knowledge Management System</h1>
<h3 style='color:#0F766E;'>National Customs Targeting Center β Mumbai</h3>
<p style='margin-top: 20px; color:#374151;'>Please log in to continue.</p>
</div>
""")
username_input = gr.Textbox(label="Username", placeholder="Enter username")
password_input = gr.Textbox(label="Password", type="password", placeholder="Enter password")
login_button = gr.Button("π Login")
login_error = gr.Textbox(visible=False, interactive=False)
with gr.Column(visible=False) as main_app_section:
title = gr.Markdown("<h1 style='text-align:center; color:#1E3A8A; font-weight:bold;'>NCTC Risk Report Analytics</h1>")
subtitle = gr.Markdown("<h2 style='text-align:center; color:#6366F1; font-weight:600;'>Powered by AI Agents</h2>")
description = gr.Markdown("<h3 style='text-align:center; color:#0F766E; font-weight:bold;'>This application provides interactive visualizations and detailed insights into NCTC risk reports. Users can explore yearly trends, subject classifications, and revenue impacts through dynamic charts and a chatbot to interact with the knowledge repository.</h3>")
with gr.TabItem("Risk Report Visualizations"):
with gr.Row():
plt1 = gr.BarPlot(
value=df_filtered.groupby("issue_year")["report_no"].count().reset_index(),
x="issue_year", y="report_no",
title="Number of Revenue Risk Reports by Issue Year",
color="issue_year"
)
plt2 = gr.BarPlot(
value=df_filtered.groupby("issue_year")["total_revenue_difference"].sum().reset_index(),
x="issue_year", y="total_revenue_difference",
title="Year-wise Total Differential Revenue Involved"
)
with gr.Row():
plt3 = gr.BarPlot(
value=df_filtered.groupby("subject_classification")["report_no"].count().reset_index(),
x="subject_classification", y="report_no",
title="Risk Type Classification",
x_label_angle=60,
x_axis_labels_visible=False
)
plt4 = gr.BarPlot(
value=df_filtered.groupby("report_category")["report_no"].count().reset_index(),
x="report_category", y="report_no",
title="Report Category",
color="report_category"
)
with gr.TabItem("View Report"):
report_dropdown = gr.Dropdown(choices=df_filtered['report_no'].unique().tolist(), label="Select Report No")
with gr.Row():
with gr.Column(scale=1):
report_output = gr.HTML()
file_id_link = gr.Markdown()
with gr.Column(scale=1):
pdf_viewer = PDF(label="PDF Viewer")
report_dropdown.change(
fn=update_report_and_pdf,
inputs=[report_dropdown],
outputs=[report_output, file_id_link, pdf_viewer]
)
with gr.Tab("AI ChatBot on RRR"):
with gr.Row():
query_input = gr.Textbox(label="Enter your query here", placeholder="e.g., What revenue reports deal with mechanical parts?")
submit_button = gr.Button("Submit")
image_urls = [
"1.gif", # Replace with actual URLs or store GIFs in HF Space
"2.gif",
"3.gif",
"4.gif"
]
gif_image = gr.Image(width=100, height=100, value=random.choice(image_urls), visible=False, label="Loading...")
with gr.Row():
with gr.Column(scale=1):
chatbot_output = gr.HTML(label="ChatBot Response", show_label=True, container=True)
with gr.Column(scale=1):
pdf_viewer_chatbot = PDF(label="PDF Viewer")
report_links = gr.Radio(label="Relevant Reports", choices=[], interactive=True)
with gr.Row():
think_tokens_output = gr.HTML(label="Agent Reasoning", show_label=True, container=True)
def handle_submit(query):
gif_update = gr.update(visible=True)
chatbot_response, relevant_report_numbers = process_query(query, model)
think_pattern = r"<think>(.*?)</think>"
think_tokens_match = re.search(think_pattern, chatbot_response, re.DOTALL)
think_tokens = think_tokens_match.group(1).strip() if think_tokens_match else "No intermediate reasoning provided."
final_answer = re.sub(think_pattern, "", chatbot_response, flags=re.DOTALL).strip()
think_tokens_html = markdown.markdown(think_tokens)
final_answer_html = markdown.markdown(final_answer)
gif_update = gr.update(visible=False)
choices = relevant_report_numbers if relevant_report_numbers else []
value = relevant_report_numbers[0] if relevant_report_numbers else None
interactive = bool(relevant_report_numbers)
if not relevant_report_numbers:
gr.Info("No relevant reports found.")
return (
final_answer_html,
gr.Radio(choices=choices, value=value, interactive=interactive),
think_tokens_html
)
def handle_report_selection(report_no):
if not report_no:
gr.Info("No report selected.")
return None
filtered_data = df_filtered[df_filtered['report_no'] == report_no]
if filtered_data.empty:
return None
file_id = filtered_data.iloc[0]['file_id']
pdf_path = download_pdf_from_drive(file_id)
if pdf_path:
return pdf_path
gr.Info(f"PDF for report {report_no} could not be loaded.")
return None
def show_gif():
return gr.Image(visible=True)
submit_button.click(
show_gif,
None,
gif_image
).then(
fn=handle_submit,
inputs=[query_input],
outputs=[chatbot_output, report_links, think_tokens_output]
)
report_links.change(
fn=handle_report_selection,
inputs=[report_links],
outputs=[pdf_viewer_chatbot]
)
login_button.click(
fn=login_action,
inputs=[username_input, password_input],
outputs=[login_section, main_app_section, login_error]
)
demo.launch(debug=True) |