Spaces:
Running
Running
File size: 52,372 Bytes
4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 209b58a ea0b085 209b58a 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 209b58a 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 209b58a 04e3b5f 209b58a 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f 4384839 04e3b5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 |
import { WebTeleoperator } from "./teleoperators/base-teleoperator";
import { MotorConfig } from "./types/teleoperation";
import * as parquet from "parquet-wasm";
import * as arrow from "apache-arrow";
import JSZip from "jszip";
import getMetadataInfo from "./utils/record/metadataInfo";
import type { VideoInfo } from "./utils/record/metadataInfo";
import getStats from "./utils/record/stats";
import generateREADME from "./utils/record/generateREADME";
import { LeRobotHFUploader } from "./hf_uploader";
import { LeRobotS3Uploader } from "./s3_uploader";
// declare a type leRobot action that's basically an array of numbers
interface LeRobotAction {
[key: number]: number;
}
export class LeRobotEpisode {
// we assume that the frames are ordered
public frames: NonIndexedLeRobotDatasetRow[];
/**
* Optional start time of the episode
* If not set, defaults to the timestamp of the first frame
*/
private _startTime?: number;
/**
* Optional end time of the episode
* If not set, defaults to the timestamp of the last frame
*/
private _endTime?: number;
/**
* Creates a new LeRobotEpisode
*
* @param frames Optional array of frames to initialize the episode with
* @param startTime Optional explicit start time for the episode
* @param endTime Optional explicit end time for the episode
*/
constructor(
frames?: NonIndexedLeRobotDatasetRow[],
startTime?: number,
endTime?: number
) {
this.frames = frames || [];
this._startTime = startTime;
this._endTime = endTime;
}
/**
* Adds a new frame to the episode
* Ensures frames are always in chronological order
*
* @param frame The frame to add
* @throws Error if the frame's timestamp is before the last frame's timestamp
*/
add(frame: NonIndexedLeRobotDatasetRow) {
const lastFrame = this.frames.at(-1);
if (lastFrame && frame.timestamp < lastFrame.timestamp) {
throw new Error(
`Frame timestamp ${frame.timestamp} is before last frame timestamp ${lastFrame.timestamp}`
);
}
this.frames.push(frame);
}
/**
* Gets the start time of the episode
* If not explicitly set, returns the timestamp of the first frame
* If no frames exist, throws an error
*/
get startTime(): number {
if (this._startTime !== undefined) {
return this._startTime;
}
const firstFrame = this.frames.at(0);
if (!firstFrame) {
throw new Error("Cannot determine start time: no frames in episode");
}
return firstFrame.timestamp;
}
/**
* Sets an explicit start time for the episode
*/
set startTime(value: number) {
this._startTime = value;
}
/**
* Gets the end time of the episode
* If not explicitly set, returns the timestamp of the last frame
* If no frames exist, throws an error
*/
get endTime(): number {
if (this._endTime !== undefined) {
return this._endTime;
}
const lastFrame = this.frames.at(-1);
if (!lastFrame) {
throw new Error("Cannot determine end time: no frames in episode");
}
return lastFrame.timestamp;
}
/**
* Sets an explicit end time for the episode
*/
set endTime(value: number) {
this._endTime = value;
}
/**
* The time difference between the start and end time of the episode, in seconds
*/
get timespan() {
const hasNoFrames = this.frames.length === 0;
if (hasNoFrames) return 0;
return this.endTime - this.startTime;
}
/**
* The number of frames in the episode
*/
get length() {
return this.frames.length;
}
/**
* Creates a new LeRobotEpisode with frames interpolated at regular intervals
*
* @param fps The desired frames per second for the interpolated episode
* @param startIndex The desired starting index for the episode frames, useful when storing multiple episodes
* @returns A new LeRobotEpisode with interpolated frames
*/
getInterpolatedRegularEpisode(
fps: number,
startIndex: number = 0
): LeRobotEpisode {
if (this.frames.length === 0) {
return new LeRobotEpisode([], this._startTime, this._endTime);
}
const actualStartTime =
this._startTime !== undefined
? this._startTime
: this.frames[0].timestamp;
const actualEndTime =
this._endTime !== undefined
? this._endTime
: this.frames[this.frames.length - 1].timestamp;
const timeDifference = actualEndTime - actualStartTime;
const numFrames = Math.max(1, Math.floor(timeDifference * fps));
const interpolatedFrames: NonIndexedLeRobotDatasetRow[] = [];
const firstFrame = this.frames[0];
const lastFrame = this.frames[this.frames.length - 1];
for (let i = 0; i < numFrames; i++) {
const timestamp = actualStartTime + i / fps;
let frameToAdd: NonIndexedLeRobotDatasetRow;
if (timestamp < firstFrame.timestamp) {
frameToAdd = { ...firstFrame, timestamp };
frameToAdd.frame_index = i;
frameToAdd.index = startIndex + i;
} else if (timestamp > lastFrame.timestamp) {
frameToAdd = { ...lastFrame, timestamp };
frameToAdd.frame_index = i;
frameToAdd.index = startIndex + i;
} else {
let lowerIndex = 0;
for (let j = 0; j < this.frames.length - 1; j++) {
if (
this.frames[j].timestamp <= timestamp &&
this.frames[j + 1].timestamp > timestamp
) {
lowerIndex = j;
break;
}
}
const lowerFrame = this.frames[lowerIndex];
const upperFrame = this.frames[lowerIndex + 1];
frameToAdd = LeRobotEpisode.interpolateFrames(
lowerFrame,
upperFrame,
timestamp
);
frameToAdd.frame_index = i;
frameToAdd.episode_index = lowerFrame.episode_index;
frameToAdd.index = startIndex + i;
frameToAdd.task_index = lowerFrame.task_index;
}
interpolatedFrames.push(frameToAdd);
}
return new LeRobotEpisode(
interpolatedFrames,
actualStartTime,
actualEndTime
);
}
/**
* Interpolates between two frames to create a new frame at the specified timestamp
*
* @param frame1 The first frame
* @param frame2 The second frame
* @param targetTimestamp The timestamp at which to interpolate
* @returns A new interpolated frame
*/
static interpolateFrames(
frame1: NonIndexedLeRobotDatasetRow,
frame2: NonIndexedLeRobotDatasetRow,
targetTimestamp: number
): NonIndexedLeRobotDatasetRow {
if (
targetTimestamp < frame1.timestamp ||
targetTimestamp > frame2.timestamp
) {
throw new Error(
"Target timestamp must be between the timestamps of the two frames"
);
}
const timeRange = frame2.timestamp - frame1.timestamp;
const interpolationFactor =
(targetTimestamp - frame1.timestamp) / timeRange;
// Interpolate action array
const interpolatedAction = LeRobotEpisode.interpolateArrays(
frame1.action,
frame2.action,
interpolationFactor
);
// Interpolate observation.state array
const interpolatedObservationState = LeRobotEpisode.interpolateArrays(
frame1["observation.state"],
frame2["observation.state"],
interpolationFactor
);
// Create the interpolated frame
return {
timestamp: targetTimestamp,
action: interpolatedAction,
"observation.state": interpolatedObservationState,
episode_index: frame1.episode_index,
task_index: frame1.task_index,
// Optional properties are not interpolated
frame_index: frame1.frame_index,
index: frame1.index,
};
}
/**
* Helper method to interpolate between two arrays
*
* @param array1 First array of values
* @param array2 Second array of values
* @param factor Interpolation factor (0-1)
* @returns Interpolated array
*/
private static interpolateArrays(
array1: any,
array2: any,
factor: number
): any {
// Handle different types of inputs
if (Array.isArray(array1) && Array.isArray(array2)) {
// For arrays, interpolate each element
return array1.map((value, index) => {
return value + (array2[index] - value) * factor;
});
} else if (typeof array1 === "object" && typeof array2 === "object") {
// For objects, interpolate each property
const result: any = {};
for (const key of Object.keys(array1)) {
if (key in array2) {
result[key] = array1[key] + (array2[key] - array1[key]) * factor;
} else {
result[key] = array1[key];
}
}
return result;
} else {
// For primitive values
return array1 + (array2 - array1) * factor;
}
}
}
/**
* Base interface for LeRobot dataset rows with common fields
*/
export interface NonIndexedLeRobotDatasetRow {
timestamp: number;
action: LeRobotAction;
"observation.state": LeRobotAction;
// properties are optional for back-converstion from normal rows
episode_index: number;
task_index: number;
frame_index?: number;
index?: number;
}
/**
* Represents a complete row in the LeRobot dataset format after indexing
* Used in the final exported dataset
*/
export interface LeRobotDatasetRow extends NonIndexedLeRobotDatasetRow {
frame_index: number;
index: number;
}
/**
* A mechanism to store and record, the video of all associated cameras
* as well as the teleoperator data
*
* follows the lerobot dataset format https://github.com/huggingface/lerobot/blob/cf86b9300dc83fdad408cfe4787b7b09b55f12cf/README.md#the-lerobotdataset-format
*/
export class LeRobotDatasetRecorder {
teleoperators: WebTeleoperator[];
videoStreams: { [key: string]: MediaStream };
mediaRecorders: { [key: string]: MediaRecorder };
videoChunks: { [key: string]: Blob[] };
videoBlobs: { [key: string]: Blob };
teleoperatorData: LeRobotEpisode[];
private _isRecording: boolean;
private episodeIndex: number = 0;
private taskIndex: number = 0;
fps: number;
taskDescription: string;
/**
* Ensures BlobPart compatibility across environments by converting Uint8Array
* to an ArrayBuffer with correct bounds and ArrayBuffer typing.
*/
private static toArrayBuffer(uint8: Uint8Array): ArrayBuffer {
const buffer = uint8.buffer;
if (buffer instanceof ArrayBuffer) {
return buffer.slice(
uint8.byteOffset,
uint8.byteOffset + uint8.byteLength
);
}
// Handle SharedArrayBuffer case by copying to ArrayBuffer
const arrayBuffer = new ArrayBuffer(uint8.byteLength);
new Uint8Array(arrayBuffer).set(uint8);
return arrayBuffer;
}
constructor(
teleoperators: WebTeleoperator[],
videoStreams: { [key: string]: MediaStream },
fps: number,
taskDescription: string = "Default task description"
) {
this.teleoperators = [];
if (teleoperators.length > 1)
throw Error(`
Currently, only 1 teleoperator can be recorded at a time!
Note : Do not attempt to create 2 different recorders via 2 different teleoperators, this would not work either
`);
this.addTeleoperator(teleoperators[0]);
this.mediaRecorders = {};
this.videoChunks = {};
this.videoBlobs = {};
this.videoStreams = {};
this.teleoperatorData = [];
this._isRecording = false;
this.fps = fps;
this.taskDescription = taskDescription;
for (const [key, stream] of Object.entries(videoStreams)) {
this.addVideoStream(key, stream);
}
}
get isRecording(): boolean {
return this._isRecording;
}
get currentEpisode(): LeRobotEpisode | undefined {
return this.teleoperatorData.at(-1);
}
/**
* Adds a new video stream to be recorded
* @param key The key to identify this video stream
* @param stream The media stream to record from
*/
addVideoStream(key: string, stream: MediaStream) {
console.log("Adding video stream", key);
if (this._isRecording) {
throw new Error("Cannot add video streams while recording");
}
// Add to video streams dictionary
this.videoStreams[key] = stream;
// Initialize MediaRecorder for this stream
this.mediaRecorders[key] = new MediaRecorder(stream, {
mimeType: "video/mp4",
});
// add a video chunk array for this stream
this.videoChunks[key] = [];
}
/**
* Add a new teleoperator and set up state update callbacks
* for recording joint position data in the LeRobot dataset format
*
* @param teleoperator The teleoperator to add callbacks to
*/
addTeleoperator(teleoperator: WebTeleoperator) {
teleoperator.addOnStateUpdateCallback((params) => {
if (this._isRecording) {
if (!this.currentEpisode)
throw Error(
"There is no current episode while recording, something is wrong!, this means that no frames exist on the recorder for some reason"
);
// Create a frame with the current state data
// Using the normalized configs for consistent data ranges
const frame: NonIndexedLeRobotDatasetRow = {
timestamp: params.commandSentTimestamp,
// For observation state, use the current motor positions
"observation.state": this.convertMotorConfigToArray(
params.newMotorConfigsNormalized
),
// For action, use the target positions that were commanded
action: this.convertMotorConfigToArray(
params.previousMotorConfigsNormalized
),
episode_index: this.episodeIndex,
task_index: this.taskIndex,
};
// Add the frame to the current episode
this.currentEpisode.add(frame);
}
});
this.teleoperators.push(teleoperator);
}
/**
* Starts recording for all teleoperators and video streams
*/
startRecording() {
console.log("Starting recording");
if (this._isRecording) {
console.warn("Recording already in progress");
return;
}
this._isRecording = true;
// add a new episode
this.teleoperatorData.push(new LeRobotEpisode());
// Start recording video streams
Object.entries(this.videoStreams).forEach(([key, stream]) => {
// Create a media recorder for this stream
const mediaRecorder = new MediaRecorder(stream, {
mimeType: "video/mp4",
});
// Handle data available events
mediaRecorder.ondataavailable = (event) => {
console.log("data available for", key);
if (event.data && event.data.size > 0) {
this.videoChunks[key].push(event.data);
}
};
// Save the recorder and start recording
this.mediaRecorders[key] = mediaRecorder;
mediaRecorder.start(1000); // Capture in 1-second chunks
console.log(`Started recording video stream: ${key}`);
});
}
setEpisodeIndex(index: number): void {
this.episodeIndex = index;
}
setTaskIndex(index: number): void {
this.taskIndex = index;
}
/**
* teleoperatorData by default only contains data
* for the episodes in a non-regularized manner
*
* this function returns episodes in a regularized manner, wherein
* the frames in each are interpolated through so that all frames are spaced
* equally through each other
*/
get episodes(): LeRobotEpisode[] {
const regularizedEpisodes: LeRobotEpisode[] = [];
let lastFrameIndex = 0;
for (let i = 0; i < this.teleoperatorData.length; i++) {
let episode = this.teleoperatorData[i];
const regularizedEpisode = episode.getInterpolatedRegularEpisode(
this.fps,
lastFrameIndex
);
regularizedEpisodes.push(regularizedEpisode);
lastFrameIndex += regularizedEpisode.frames?.at(-1)?.index || 0;
}
return regularizedEpisodes;
}
/**
* Stops recording for all teleoperators and video streams
* @returns An object containing teleoperator data and video blobs
*/
async stopRecording() {
if (!this._isRecording) {
console.warn("No recording in progress");
return { teleoperatorData: [], videoBlobs: {} };
}
this._isRecording = false;
// Stop all media recorders
const stopPromises = Object.entries(this.mediaRecorders).map(
([key, recorder]) => {
return new Promise<void>((resolve) => {
// Only do this if the recorder is active
if (recorder.state === "inactive") {
resolve();
return;
}
// When the recorder stops, create a blob
recorder.onstop = () => {
// Combine all chunks into a single blob
const chunks = this.videoChunks[key] || [];
const blob = new Blob(chunks, { type: "video/mp4" });
this.videoBlobs[key] = blob;
resolve();
};
// Stop the recorder
recorder.stop();
});
}
);
// Wait for all recorders to stop
await Promise.all(stopPromises);
return {
teleoperatorData: this.episodes,
videoBlobs: this.videoBlobs,
};
}
/**
* Clears the teleoperator data and video blobs
*/
clearRecording() {
this.teleoperatorData = [];
this.videoBlobs = {};
}
/**
* Action is a dictionary of motor positions, timestamp1 and timestamp2 are when the actions occurred
* reqTimestamp must be between timestamp1 and timestamp2
*
* the keys in action1 and action2 must match, this will loop through the dictionary
* and interpolate each action to the required timestamp
*
* @param action1 Motor positions at timestamp1
* @param action2 Motor positions at timestamp2
* @param timestamp1 The timestamp of action1
* @param timestamp2 The timestamp of action2
* @param reqTimestamp The timestamp at which to interpolate
* @returns The interpolated action
*/
_actionInterpolatate(
action1: any,
action2: any,
timestamp1: number,
timestamp2: number,
reqTimestamp: number
): any {
if (reqTimestamp < timestamp1 || reqTimestamp > timestamp2)
throw new Error("reqTimestamp must be between timestamp1 and timestamp2");
if (timestamp2 < timestamp1)
throw new Error("timestamp2 must be greater than timestamp1");
const numActions = Object.keys(action1).length;
const interpolatedAction: any = {};
const timeRange = timestamp2 - timestamp1;
for (let i = 0; i < numActions; i++) {
const key = Object.keys(action1)[i];
interpolatedAction[key] =
action1[key] +
((action2[key] - action1[key]) * (reqTimestamp - timestamp1)) /
timeRange;
}
return interpolatedAction;
}
/**
* Converts an action object to an array of numbers
* follows the same pattern as https://huggingface.co/datasets/lerobot/svla_so100_pickplace
* I am not really sure if the array can be in a different order
* but I am not going to risk it tbh 😛
*
* @param action The action object to convert
* @returns An array of numbers
*/
convertActionToArray(action: any): number[] {
return [
action["shoulder_pan"],
action["shoulder_lift"],
action["elbow_flex"],
action["wrist_flex"],
action["wrist_roll"],
action["gripper"],
];
}
/**
* Converts an array of MotorConfig objects to an action object
* following the same joint order as convertActionToArray
*
* @param motorConfigs Array of MotorConfig objects
* @returns An action object with joint positions
*/
convertMotorConfigToArray(motorConfigs: MotorConfig[]): number[] {
// Create a map for quick lookup of motor positions by name
const motorMap: Record<string, number> = {};
for (const config of motorConfigs) {
motorMap[config.name] = config.currentPosition;
}
// Define required joint names
const requiredJoints = [
"shoulder_pan",
"shoulder_lift",
"elbow_flex",
"wrist_flex",
"wrist_roll",
"gripper",
];
// Check that all required joints are present
const missingJoints = requiredJoints.filter(
(joint) => motorMap[joint] === undefined
);
if (missingJoints.length > 0) {
throw new Error(
`Missing required joints in motor configs: ${missingJoints.join(
", "
)}. Available joints: ${Object.keys(motorMap).join(", ")}`
);
}
// Return in the same order as convertActionToArray
return [
motorMap["shoulder_pan"],
motorMap["shoulder_lift"],
motorMap["elbow_flex"],
motorMap["wrist_flex"],
motorMap["wrist_roll"],
motorMap["gripper"],
];
}
/**
* Finds the closest timestamp to the target timestamp
*
* the data must have timestamps in ascending order
* uses binary search to get the closest timestamp
*
* @param data The data to search through
* @param targetTimestamp The target timestamp
* @returns The closest timestamp in the data's index
*/
_findClosestTimestampBefore(data: any[], targetTimestamp: number): number {
let firstIndex = 0;
let lastIndex = data.length - 1;
while (firstIndex <= lastIndex) {
const middleIndex = Math.floor((firstIndex + lastIndex) / 2);
const middleTimestamp = data[middleIndex].timestamp;
if (middleTimestamp === targetTimestamp) {
return middleIndex;
} else if (middleTimestamp < targetTimestamp) {
firstIndex = middleIndex + 1;
} else {
lastIndex = middleIndex - 1;
}
}
return lastIndex;
}
/**
* Takes non-regularly spaced lerobot-ish data and interpolates it to a regularly spaced dataset
* also adds additional
* - frame_index
* - episode_index
* - index columns
*
* to match lerobot dataset requirements
*/
_interpolateAndCompleteLerobotData(
fps: number,
frameData: NonIndexedLeRobotDatasetRow[],
lastFrameIndex: number
): LeRobotDatasetRow[] {
const interpolatedData: LeRobotDatasetRow[] = [];
const minTimestamp = frameData[0].timestamp;
const maxTimestamp = frameData[frameData.length - 1].timestamp;
const timeDifference = maxTimestamp - minTimestamp;
const numFrames = Math.floor(timeDifference * fps);
const firstFrame = frameData[0];
console.log(
"frames before interpolation",
numFrames,
frameData[0].timestamp,
frameData[frameData.length - 1].timestamp,
fps
);
interpolatedData.push({
timestamp: firstFrame.timestamp,
action: this.convertActionToArray(firstFrame.action),
"observation.state": this.convertActionToArray(
firstFrame["observation.state"]
),
episode_index: firstFrame.episode_index,
task_index: firstFrame.task_index,
frame_index: 0,
index: lastFrameIndex,
});
// start from 1 as the first frame is pushed already (see above)
for (let i = 1; i < numFrames; i++) {
const timestamp = i / fps;
const closestIndex = this._findClosestTimestampBefore(
frameData,
timestamp
);
const nextIndex = closestIndex + 1;
const closestItemData = frameData[closestIndex];
const nextItemData = frameData[nextIndex];
const action = this._actionInterpolatate(
closestItemData.action,
nextItemData.action,
closestItemData.timestamp,
nextItemData.timestamp,
timestamp
);
const observation_state = this._actionInterpolatate(
closestItemData["observation.state"],
nextItemData["observation.state"],
closestItemData.timestamp,
nextItemData.timestamp,
timestamp
);
interpolatedData.push({
timestamp: timestamp,
action: this.convertActionToArray(action),
"observation.state": this.convertActionToArray(observation_state),
episode_index: closestItemData.episode_index,
task_index: closestItemData.task_index,
frame_index: i,
index: lastFrameIndex + i,
});
}
return interpolatedData;
}
/**
* converts all the frames of a recording into lerobot dataset frame style
*
* NOTE : This does not interpolate the data, you are only working with raw data
* that is called by the teleop when things are actively "changing"
* @param episodeRough
*/
_convertToLeRobotDataFormatFrames(
episodeRough: any[]
): NonIndexedLeRobotDatasetRow[] {
const properFormatFrames: NonIndexedLeRobotDatasetRow[] = [];
const firstTimestamp = episodeRough[0].commandSentTimestamp;
for (let i = 0; i < episodeRough.length; i++) {
const frameRough = episodeRough[i];
properFormatFrames.push({
timestamp: frameRough.commandSentTimestamp - firstTimestamp, // so timestamps start from 0, and are in seconds
action: frameRough.previousMotorConfigsNormalized,
"observation.state": frameRough.newMotorConfigsNormalized,
episode_index: frameRough.episodeIndex,
task_index: frameRough.taskIndex,
});
}
return properFormatFrames;
}
/**
* Converts teleoperator data to a parquet blob
* @private
* @returns Array of objects containing parquet file content and path
*/
private async _exportEpisodesToBlob(
episodes: LeRobotEpisode[]
): Promise<{ content: Blob; path: string }[]> {
// combine all the frames
let data: NonIndexedLeRobotDatasetRow[] = [];
const episodeBlobs: any[] = [];
for (let i = 0; i < episodes.length; i++) {
const episode = episodes[i];
data = episode.frames;
const { tableFromArrays, vectorFromArray } = arrow;
const timestamps = data.map((row: any) => row.timestamp);
const actions = data.map((row: any) => row.action);
const observationStates = data.map(
(row: any) => row["observation.state"]
);
const episodeIndexes = data.map((row: any) => row.episode_index);
const taskIndexes = data.map((row: any) => row.task_index);
const frameIndexes = data.map((row: any) => row.frame_index);
const indexes = data.map((row: any) => row.index);
const table = tableFromArrays({
timestamp: timestamps,
// @ts-ignore, this works, idk why
action: vectorFromArray(
actions,
new arrow.List(new arrow.Field("item", new arrow.Float32()))
),
// @ts-ignore, this works, idk why
"observation.state": vectorFromArray(
observationStates,
new arrow.List(new arrow.Field("item", new arrow.Float32()))
),
episode_index: episodeIndexes,
task_index: taskIndexes,
frame_index: frameIndexes,
index: indexes,
});
const wasmUrl =
"https://cdn.jsdelivr.net/npm/parquet-wasm@0.6.1/esm/parquet_wasm_bg.wasm";
const initWasm = parquet.default;
await initWasm(wasmUrl);
const wasmTable = parquet.Table.fromIPCStream(
arrow.tableToIPC(table, "stream")
);
const writerProperties = new parquet.WriterPropertiesBuilder()
.setCompression(parquet.Compression.UNCOMPRESSED)
.build();
const parquetUint8Array = parquet.writeParquet(
wasmTable,
writerProperties
);
const numpadded = i.toString().padStart(6, "0");
const content = new Blob([
LeRobotDatasetRecorder.toArrayBuffer(parquetUint8Array as Uint8Array),
]);
episodeBlobs.push({
content,
path: `data/chunk-000/episode_${numpadded}.parquet`,
});
}
return episodeBlobs;
}
/**
* Exports the teleoperator data in lerobot format
* @param format The format to return the data in ('json' or 'blob')
* @returns Either an array of data objects or a Uint8Array blob depending on format
*/
exportEpisodes(format: "json" | "blob" = "json") {
if (this._isRecording)
throw new Error("This can only be called after recording has stopped!");
const data = this.episodes;
if (format === "json") {
return data;
} else {
return this._exportEpisodesToBlob(data);
}
}
/**
* Exports the media (video) data as blobs
* @returns A dictionary of video blobs with the same keys as videoStreams
*/
async exportMediaData(): Promise<{ [key: string]: Blob }> {
if (this._isRecording)
throw new Error("This can only be called after recording has stopped!");
return this.videoBlobs;
}
/**
* Generates metadata for the dataset
* @returns Metadata object for the LeRobot dataset
*/
async generateMetadata(data: any[]): Promise<any> {
// Calculate total episodes, frames, and tasks
let total_episodes = 0;
const total_frames = data.length;
let total_tasks = 0;
for (const row of data) {
total_episodes = Math.max(total_episodes, row.episode_index);
total_tasks = Math.max(total_tasks, row.task_index);
}
// Create video info objects for each video stream
const videos_info: VideoInfo[] = Object.keys(this.videoBlobs).map((key) => {
// Default values - in a production environment, you would extract
// these from the actual video metadata using the key to identify the video source
console.log(`Generating metadata for video stream: ${key}`);
return {
height: 480,
width: 640,
channels: 3,
codec: "h264",
pix_fmt: "yuv420p",
is_depth_map: false,
has_audio: false,
};
});
// Calculate approximate file sizes in MB
const data_files_size_in_mb = Math.round(data.length * 0.001); // Estimate
// Calculate video size by summing the sizes of all video blobs and converting to MB
let video_files_size_in_mb = 0;
for (const blob of Object.values(this.videoBlobs)) {
video_files_size_in_mb += blob.size / (1024 * 1024);
}
video_files_size_in_mb = Math.round(video_files_size_in_mb);
// Generate and return the metadata
return getMetadataInfo({
total_episodes,
total_frames,
total_tasks,
chunks_size: 1000, // Default chunk size
fps: this.fps,
splits: { train: `0:${total_episodes}` }, // All episodes in train split
features: {}, // Additional features can be added here
videos_info,
data_files_size_in_mb,
video_files_size_in_mb,
});
}
/**
* Generates statistics for the dataset
* @returns Statistics object for the LeRobot dataset
*/
async getStatistics(data: any[]): Promise<any> {
// Get camera keys from the video blobs
const cameraKeys = Object.keys(this.videoBlobs);
// Generate stats using the data and camera keys
return getStats(data, cameraKeys);
}
/**
* Creates a tasks.parquet file containing task description
* @returns A Uint8Array blob containing the parquet data
*/
async createTasksParquet(): Promise<Uint8Array> {
// Create a simple data structure with the task description
const tasksData = [
{
task_index: 0,
__index_level_0__: this.taskDescription,
},
];
// Create Arrow table from the data
const taskIndexArr = arrow.vectorFromArray(
tasksData.map((d) => d.task_index),
new arrow.Int32()
);
const descriptionArr = arrow.vectorFromArray(
tasksData.map((d) => d.__index_level_0__),
new arrow.Utf8()
);
const table = arrow.tableFromArrays({
// @ts-ignore, this works, idk why
task_index: taskIndexArr,
// @ts-ignore, this works, idk why
__index_level_0__: descriptionArr,
});
// Initialize the WASM module
const wasmUrl =
"https://cdn.jsdelivr.net/npm/parquet-wasm@0.6.1/esm/parquet_wasm_bg.wasm";
const initWasm = parquet.default;
await initWasm(wasmUrl);
// Convert Arrow table to Parquet WASM table
const wasmTable = parquet.Table.fromIPCStream(
arrow.tableToIPC(table, "stream")
);
// Set compression properties
const writerProperties = new parquet.WriterPropertiesBuilder()
.setCompression(parquet.Compression.UNCOMPRESSED)
.build();
// Write the Parquet file
return parquet.writeParquet(wasmTable, writerProperties);
}
/**
* Creates the episodes statistics parquet file
* @returns A Uint8Array blob containing the parquet data
*/
async getEpisodeStatistics(data: any[]): Promise<Uint8Array> {
const { vectorFromArray } = arrow;
const statistics = await this.getStatistics(data);
// Calculate total episodes and frames
let total_episodes = 0;
for (let row of data) {
total_episodes = Math.max(total_episodes, row.episode_index);
}
total_episodes += 1; // +1 since episodes start from 0
const episodes: any[] = [];
// we'll create one row per episode
for (
let episode_index = 0;
episode_index < total_episodes;
episode_index++
) {
// Get data for this episode only
const episodeData = data.filter(
(row) => row.episode_index === episode_index
);
// Extract timestamps for this episode
const timestamps = episodeData.map((row) => row.timestamp);
let min_timestamp = Infinity;
let max_timestamp = -Infinity;
for (let timestamp of timestamps) {
min_timestamp = Math.min(min_timestamp, timestamp);
max_timestamp = Math.max(max_timestamp, timestamp);
}
// Camera keys from video blobs
const cameraKeys = Object.keys(this.videoBlobs);
// Create entry for this episode
const episodeEntry: any = {
// Basic episode information
episode_index: episode_index,
"data/chunk_index": 0,
"data/file_index": 0,
dataset_from_index: 0,
dataset_to_index: episodeData.length - 1,
length: episodeData.length,
tasks: [0], // Task index 0, could be extended for multiple tasks
// Meta information
"meta/episodes/chunk_index": 0,
"meta/episodes/file_index": 0,
};
// Add video information for each camera
cameraKeys.forEach((key) => {
episodeEntry[`videos/observation.images.${key}/chunk_index`] = 0;
episodeEntry[`videos/observation.images.${key}/file_index`] = 0;
episodeEntry[`videos/observation.images.${key}/from_timestamp`] =
min_timestamp;
episodeEntry[`videos/observation.images.${key}/to_timestamp`] =
max_timestamp;
});
// Add statistics for each field
// This is a simplified approach - in a real implementation, you'd calculate
// these values for each episode individually
// Add timestamp statistics
episodeEntry["stats/timestamp/min"] = [statistics.timestamp.min];
episodeEntry["stats/timestamp/max"] = [statistics.timestamp.max];
episodeEntry["stats/timestamp/mean"] = [statistics.timestamp.mean];
episodeEntry["stats/timestamp/std"] = [statistics.timestamp.std];
episodeEntry["stats/timestamp/count"] = [statistics.timestamp.count];
// Add frame_index statistics
episodeEntry["stats/frame_index/min"] = [statistics.frame_index.min];
episodeEntry["stats/frame_index/max"] = [statistics.frame_index.max];
episodeEntry["stats/frame_index/mean"] = [statistics.frame_index.mean];
episodeEntry["stats/frame_index/std"] = [statistics.frame_index.std];
episodeEntry["stats/frame_index/count"] = [statistics.frame_index.count];
// Add episode_index statistics
episodeEntry["stats/episode_index/min"] = [statistics.episode_index.min];
episodeEntry["stats/episode_index/max"] = [statistics.episode_index.max];
episodeEntry["stats/episode_index/mean"] = [
statistics.episode_index.mean,
];
episodeEntry["stats/episode_index/std"] = [statistics.episode_index.std];
episodeEntry["stats/episode_index/count"] = [
statistics.episode_index.count,
];
// Add task_index statistics
episodeEntry["stats/task_index/min"] = [statistics.task_index.min];
episodeEntry["stats/task_index/max"] = [statistics.task_index.max];
episodeEntry["stats/task_index/mean"] = [statistics.task_index.mean];
episodeEntry["stats/task_index/std"] = [statistics.task_index.std];
episodeEntry["stats/task_index/count"] = [statistics.task_index.count];
// Add index statistics
episodeEntry["stats/index/min"] = [0];
episodeEntry["stats/index/max"] = [episodeData.length - 1];
episodeEntry["stats/index/mean"] = [episodeData.length / 2];
episodeEntry["stats/index/std"] = [episodeData.length / 4]; // Approximate std
episodeEntry["stats/index/count"] = [episodeData.length];
// Add action statistics (placeholder)
episodeEntry["stats/action/min"] = [0.0];
episodeEntry["stats/action/max"] = [1.0];
episodeEntry["stats/action/mean"] = [0.5];
episodeEntry["stats/action/std"] = [0.2];
episodeEntry["stats/action/count"] = [episodeData.length];
// Add observation.state statistics (placeholder)
episodeEntry["stats/observation.state/min"] = [0.0];
episodeEntry["stats/observation.state/max"] = [1.0];
episodeEntry["stats/observation.state/mean"] = [0.5];
episodeEntry["stats/observation.state/std"] = [0.2];
episodeEntry["stats/observation.state/count"] = [episodeData.length];
// Add observation.images statistics for each camera
cameraKeys.forEach((key) => {
// Get the image statistics from the overall statistics
const imageStats = statistics[`observation.images.${key}`] || {
min: [[[0.0]], [[0.0]], [[0.0]]],
max: [[[255.0]], [[255.0]], [[255.0]]],
mean: [[[127.5]], [[127.5]], [[127.5]]],
std: [[[50.0]], [[50.0]], [[50.0]]],
count: [[[episodeData.length * 3]]],
};
episodeEntry[`stats/observation.images.${key}/min`] = imageStats.min;
episodeEntry[`stats/observation.images.${key}/max`] = imageStats.max;
episodeEntry[`stats/observation.images.${key}/mean`] = imageStats.mean;
episodeEntry[`stats/observation.images.${key}/std`] = imageStats.std;
episodeEntry[`stats/observation.images.${key}/count`] =
imageStats.count;
});
episodes.push(episodeEntry);
}
// Create vector arrays for each column
const columns: any = {};
// Define column names and default types
const columnNames = [
"episode_index",
"data/chunk_index",
"data/file_index",
"dataset_from_index",
"dataset_to_index",
"length",
"meta/episodes/chunk_index",
"meta/episodes/file_index",
"tasks",
];
// Add camera-specific columns
const cameraKeys = Object.keys(this.videoBlobs);
cameraKeys.forEach((key) => {
columnNames.push(
`videos/observation.images.${key}/chunk_index`,
`videos/observation.images.${key}/file_index`,
`videos/observation.images.${key}/from_timestamp`,
`videos/observation.images.${key}/to_timestamp`
);
});
// Add statistic columns for each field
const statFields = [
"timestamp",
"frame_index",
"episode_index",
"task_index",
"index",
"action",
"observation.state",
];
statFields.forEach((field) => {
columnNames.push(
`stats/${field}/min`,
`stats/${field}/max`,
`stats/${field}/mean`,
`stats/${field}/std`,
`stats/${field}/count`
);
});
// Add image statistic columns for each camera
cameraKeys.forEach((key) => {
columnNames.push(
`stats/observation.images.${key}/min`,
`stats/observation.images.${key}/max`,
`stats/observation.images.${key}/mean`,
`stats/observation.images.${key}/std`,
`stats/observation.images.${key}/count`
);
});
// Create vector arrays for each column
columnNames.forEach((columnName) => {
const values = episodes.map((ep) => ep[columnName] || 0);
// Check if the column is an array type and needs special handling
if (columnName.includes("stats/") || columnName === "tasks") {
// Handle different types of array columns based on their naming pattern
if (columnName.includes("/count")) {
// Bigint arrays for count fields
// @ts-ignore
columns[columnName] = vectorFromArray(
values.map((v) => Number(v)),
new arrow.List(new arrow.Field("item", new arrow.Int64()))
);
} else if (
columnName.includes("/min") ||
columnName.includes("/max") ||
columnName.includes("/mean") ||
columnName.includes("/std")
) {
// Double arrays for min, max, mean, std fields
if (
columnName.includes("observation.images") &&
(columnName.includes("/min") ||
columnName.includes("/max") ||
columnName.includes("/mean") ||
columnName.includes("/std"))
) {
// These are 3D arrays [[[value]]]
// For 3D arrays, we need nested Lists
// @ts-ignore
columns[columnName] = vectorFromArray(
values,
new arrow.List(
new arrow.Field(
"item",
new arrow.List(
new arrow.Field(
"subitem",
new arrow.List(
new arrow.Field("value", new arrow.Float64())
)
)
)
)
)
);
} else {
// These are normal arrays [value]
// @ts-ignore
columns[columnName] = vectorFromArray(
values,
new arrow.List(new arrow.Field("item", new arrow.Float64()))
);
}
} else {
// Default to Float64 List for other array types
// @ts-ignore
columns[columnName] = vectorFromArray(
values,
new arrow.List(new arrow.Field("item", new arrow.Float64()))
);
}
} else {
// For non-array columns, use regular vectorFromArray
// @ts-ignore
columns[columnName] = vectorFromArray(values);
}
});
// Create the table with all columns
const table = arrow.tableFromArrays(columns);
// Initialize the WASM module
const wasmUrl =
"https://cdn.jsdelivr.net/npm/parquet-wasm@0.6.1/esm/parquet_wasm_bg.wasm";
const initWasm = parquet.default;
await initWasm(wasmUrl);
// Convert Arrow table to Parquet WASM table
const wasmTable = parquet.Table.fromIPCStream(
arrow.tableToIPC(table, "stream")
);
// Set compression properties
const writerProperties = new parquet.WriterPropertiesBuilder()
.setCompression(parquet.Compression.UNCOMPRESSED)
.build();
// Write the Parquet file
return parquet.writeParquet(wasmTable, writerProperties);
}
generateREADME(metaInfo: string) {
return generateREADME(metaInfo);
}
/**
* Creates an array of path and blob content objects for the LeRobot dataset
*
* @returns An array of {path, content} objects representing the dataset files
* @private
*/
async _exportForLeRobotBlobs() {
const teleoperatorDataJson = (await this.exportEpisodes("json")) as any[];
const parquetEpisodeDataFiles = await this._exportEpisodesToBlob(
teleoperatorDataJson
);
const videoBlobs = await this.exportMediaData();
const metadata = await this.generateMetadata(teleoperatorDataJson);
const statistics = await this.getStatistics(teleoperatorDataJson);
const tasksParquet = await this.createTasksParquet();
const episodesParquet = await this.getEpisodeStatistics(
teleoperatorDataJson
);
const readme = this.generateREADME(JSON.stringify(metadata));
// Create the blob array with proper paths
const blobArray = [
...parquetEpisodeDataFiles,
{
path: "meta/info.json",
content: new Blob([JSON.stringify(metadata, null, 2)], {
type: "application/json",
}),
},
{
path: "meta/stats.json",
content: new Blob([JSON.stringify(statistics, null, 2)], {
type: "application/json",
}),
},
{
path: "meta/tasks.parquet",
content: new Blob([
LeRobotDatasetRecorder.toArrayBuffer(tasksParquet as Uint8Array),
]),
},
{
path: "meta/episodes/chunk-000/file-000.parquet",
content: new Blob([
LeRobotDatasetRecorder.toArrayBuffer(episodesParquet as Uint8Array),
]),
},
{
path: "README.md",
content: new Blob([readme], { type: "text/markdown" }),
},
];
// Add video blobs with proper paths
for (const [key, blob] of Object.entries(videoBlobs)) {
blobArray.push({
path: `videos/chunk-000/observation.images.${key}/episode_000000.mp4`,
content: blob,
});
}
return blobArray;
}
/**
* Creates a ZIP file from the dataset blobs
*
* @returns A Blob containing the ZIP file
* @private
*/
async _exportForLeRobotZip() {
const blobArray = await this._exportForLeRobotBlobs();
const zip = new JSZip();
// Add all blobs to the zip with their paths
for (const item of blobArray) {
// Split the path to handle directories
const pathParts = item.path.split("/");
const fileName = pathParts.pop() || "";
let currentFolder = zip;
// Create nested folders as needed
if (pathParts.length > 0) {
for (const part of pathParts) {
currentFolder = currentFolder.folder(part) || currentFolder;
}
}
// Add file to the current folder
currentFolder.file(fileName, item.content);
}
// Generate the zip file
return await zip.generateAsync({ type: "blob" });
}
/**
* Uploads the LeRobot dataset to Hugging Face
*
* @param username Hugging Face username
* @param repoName Repository name for the dataset
* @param accessToken Hugging Face access token
* @returns The LeRobotHFUploader instance used for upload
*/
async _exportForLeRobotHuggingface(
username: string,
repoName: string,
accessToken: string
) {
// Create the blobs array for upload
const blobArray = await this._exportForLeRobotBlobs();
// Create the uploader
const uploader = new LeRobotHFUploader(username, repoName);
// Convert blobs to File objects for HF uploader
const files = blobArray.map((item) => {
return {
path: item.path,
content: item.content,
};
});
// Generate a unique reference ID for tracking the upload
const referenceId = `lerobot-upload-${Date.now()}`;
try {
// Start the upload process
uploader.createRepoAndUploadFiles(files, accessToken, referenceId);
console.log(`Successfully uploaded dataset to ${username}/${repoName}`);
return uploader;
} catch (error) {
console.error("Error uploading to Hugging Face:", error);
throw error;
}
}
/**
* Uploads the LeRobot dataset to Amazon S3
*
* @param bucketName S3 bucket name
* @param accessKeyId AWS access key ID
* @param secretAccessKey AWS secret access key
* @param region AWS region (default: us-east-1)
* @param prefix Optional prefix (folder) to upload files to within the bucket
* @returns The LeRobotS3Uploader instance used for upload
*/
async _exportForLeRobotS3(
bucketName: string,
accessKeyId: string,
secretAccessKey: string,
region: string = "us-east-1",
prefix: string = ""
) {
// Create the blobs array for upload
const blobArray = await this._exportForLeRobotBlobs();
// Create the uploader
const uploader = new LeRobotS3Uploader(bucketName, region);
// Convert blobs to File objects for S3 uploader
const files = blobArray.map((item) => {
return {
path: item.path,
content: item.content,
};
});
// Generate a unique reference ID for tracking the upload
const referenceId = `lerobot-s3-upload-${Date.now()}`;
try {
// Start the upload process
uploader.checkBucketAndUploadFiles(
files,
accessKeyId,
secretAccessKey,
prefix,
referenceId
);
console.log(`Successfully uploaded dataset to S3 bucket: ${bucketName}`);
return uploader;
} catch (error) {
console.error("Error uploading to S3:", error);
throw error;
}
}
/**
* Exports the LeRobot dataset in various formats
*
* @param format The export format - 'blobs', 'zip', 'zip-download', 'huggingface', or 's3'
* @param options Additional options for specific formats
* @param options.username Hugging Face username (if not provided for "huggingface" format, it will use the default username)
* @param options.repoName Hugging Face repository name (required for 'huggingface' format)
* @param options.accessToken Hugging Face access token (required for 'huggingface' format)
* @param options.bucketName S3 bucket name (required for 's3' format)
* @param options.accessKeyId AWS access key ID (required for 's3' format)
* @param options.secretAccessKey AWS secret access key (required for 's3' format)
* @param options.region AWS region (optional for 's3' format, default: us-east-1)
* @param options.prefix S3 prefix/folder (optional for 's3' format)
* @returns The exported data in the requested format or the uploader instance for 'huggingface'/'s3' formats
*/
async exportForLeRobot(
format:
| "blobs"
| "zip"
| "zip-download"
| "huggingface"
| "s3" = "zip-download",
options?: {
username?: string;
repoName?: string;
accessToken?: string;
bucketName?: string;
accessKeyId?: string;
secretAccessKey?: string;
region?: string;
prefix?: string;
}
) {
switch (format) {
case "blobs":
return this._exportForLeRobotBlobs();
case "zip":
return this._exportForLeRobotZip();
case "huggingface":
// Validate required options for Hugging Face upload
if (!options || !options.repoName || !options.accessToken) {
throw new Error(
"Hugging Face upload requires repoName, and accessToken options"
);
}
if (!options.username) {
const hub = await import("@huggingface/hub");
const { name: username } = await hub.whoAmI({
accessToken: options.accessToken,
});
options.username = username;
}
return this._exportForLeRobotHuggingface(
options.username,
options.repoName,
options.accessToken
);
case "s3":
// Validate required options for S3 upload
if (
!options ||
!options.bucketName ||
!options.accessKeyId ||
!options.secretAccessKey
) {
throw new Error(
"S3 upload requires bucketName, accessKeyId, and secretAccessKey options"
);
}
return this._exportForLeRobotS3(
options.bucketName,
options.accessKeyId,
options.secretAccessKey,
options.region,
options.prefix
);
case "zip-download":
default:
// Get the zip blob
const zipContent = await this._exportForLeRobotZip();
// Create a URL for the zip file
const url = URL.createObjectURL(zipContent);
// Create a download link and trigger the download
const link = document.createElement("a");
link.href = url;
link.download = `lerobot_dataset_${new Date()
.toISOString()
.replace(/[:.]/g, "-")}.zip`;
document.body.appendChild(link);
link.click();
// Clean up
setTimeout(() => {
document.body.removeChild(link);
URL.revokeObjectURL(url);
}, 100);
return zipContent;
}
}
}
|