Commit
Β·
0a7cea6
1
Parent(s):
59db409
translation
Browse files- app.py +38 -85
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,104 +1,57 @@
|
|
| 1 |
-
# import os
|
| 2 |
-
# import gradio as gr
|
| 3 |
-
# from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 4 |
-
|
| 5 |
-
# en2ko = "KoJLabs/nllb-finetuned-en2ko"
|
| 6 |
-
# ko2en = "KoJLabs/nllb-finetuned-ko2en"
|
| 7 |
-
# style = "KoJLabs/bart-speech-style-converter"
|
| 8 |
-
|
| 9 |
-
# en2ko_model = AutoModelForSeq2SeqLM.from_pretrained(en2ko)
|
| 10 |
-
# ko2en_model = AutoModelForSeq2SeqLM.from_pretrained(ko2en)
|
| 11 |
-
# style_model = AutoModelForSeq2SeqLM.from_pretrained(style)
|
| 12 |
-
|
| 13 |
-
# en2ko_tokenizer = AutoTokenizer.from_pretrained(en2ko)
|
| 14 |
-
# ko2en_tokenizer = AutoTokenizer.from_pretrained(ko2en)
|
| 15 |
-
# style_tokenizer = AutoTokenizer.from_pretrained(style)
|
| 16 |
-
|
| 17 |
-
# def translate(source, target, text):
|
| 18 |
-
# formats = {"English":"eng_Latn", "Korean":"kor_Hang"}
|
| 19 |
-
# src = formats[source]
|
| 20 |
-
# tgt = formats[target]
|
| 21 |
-
|
| 22 |
-
# if src == "eng_Latn":
|
| 23 |
-
# translator = pipeline(
|
| 24 |
-
# 'translation',
|
| 25 |
-
# model=en2ko_model,
|
| 26 |
-
# tokenizer=ko2en_tokenizer,
|
| 27 |
-
# src_lang=src,
|
| 28 |
-
# tgt_lang=tgt,
|
| 29 |
-
# )
|
| 30 |
-
|
| 31 |
-
# if src == "kor_Hang":
|
| 32 |
-
# translator = pipeline(
|
| 33 |
-
# 'translation',
|
| 34 |
-
# model=ko2en_model,
|
| 35 |
-
# tokenizer=en2ko_tokenizer,
|
| 36 |
-
# src_lang=src,
|
| 37 |
-
# tgt_lang=tgt
|
| 38 |
-
# )
|
| 39 |
-
|
| 40 |
-
# output = translator(text)
|
| 41 |
-
# translated_text = output[0]['translation_text']
|
| 42 |
-
|
| 43 |
-
# return translated_text
|
| 44 |
-
|
| 45 |
-
# title = 'KoTAN Translator & Speech-style converter'
|
| 46 |
-
# lang = ['English','Korean']
|
| 47 |
-
|
| 48 |
-
# translator_app = gr.Interface(
|
| 49 |
-
# fn=translate,
|
| 50 |
-
# inputs=[gr.inputs.Dropdown(choices=lang, label='Source Language'), gr.inputs.Dropdown(choices=lang, label='Target Language'), gr.inputs.Textbox(lines=5, label='Text to Translate')],
|
| 51 |
-
# outputs=[gr.outputs.Textbox(label='Translated Text')],
|
| 52 |
-
# title=title,
|
| 53 |
-
# description = 'KoTAN: Korean Translation and Augmentation with fine-tuned NLLB. If you want to download as pip package, please visit our github. (https://github.com/KoJLabs/KoTAN)',
|
| 54 |
-
# article='Jisu, Kim. Juhwan, Lee',
|
| 55 |
-
# enable_queue=True,
|
| 56 |
-
# )
|
| 57 |
-
|
| 58 |
-
# translator_app.launch()
|
| 59 |
-
|
| 60 |
import os
|
| 61 |
import gradio as gr
|
| 62 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 63 |
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
def translate(source, target, text):
|
| 70 |
-
formats = {
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
output = translator(text)
|
| 81 |
translated_text = output[0]['translation_text']
|
|
|
|
| 82 |
return translated_text
|
| 83 |
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
lang = ['Akuapem','Asante', 'English', 'Ewe','Hausa']
|
| 88 |
translator_app = gr.Interface(
|
| 89 |
fn=translate,
|
| 90 |
inputs=[gr.inputs.Dropdown(choices=lang, label='Source Language'), gr.inputs.Dropdown(choices=lang, label='Target Language'), gr.inputs.Textbox(lines=5, label='Text to Translate')],
|
| 91 |
outputs=[gr.outputs.Textbox(label='Translated Text')],
|
| 92 |
title=title,
|
| 93 |
-
description = '
|
| 94 |
-
article='
|
| 95 |
-
examples = [['English','Asante','Kwame went to Kaneshie to buy tomates.'],
|
| 96 |
-
['English','Ewe','The event should be hosted at the Accra Mall.'],
|
| 97 |
-
['English','Akuapem','The trader is suffering from Malaria so she did not go to work.'],
|
| 98 |
-
['English','Hausa','The last person to get to the class will be sacked.']],
|
| 99 |
-
#allow_flagging='manual',
|
| 100 |
-
#flagging_options=['ππΌ','ππΌ'],
|
| 101 |
-
#flagging_callback=hf_writer,
|
| 102 |
enable_queue=True,
|
| 103 |
)
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 4 |
|
| 5 |
+
en2ko = "KoJLabs/nllb-finetuned-en2ko"
|
| 6 |
+
ko2en = "KoJLabs/nllb-finetuned-ko2en"
|
| 7 |
+
style = "KoJLabs/bart-speech-style-converter"
|
| 8 |
|
| 9 |
+
en2ko_model = AutoModelForSeq2SeqLM.from_pretrained(en2ko)
|
| 10 |
+
ko2en_model = AutoModelForSeq2SeqLM.from_pretrained(ko2en)
|
| 11 |
+
style_model = AutoModelForSeq2SeqLM.from_pretrained(style)
|
| 12 |
+
|
| 13 |
+
en2ko_tokenizer = AutoTokenizer.from_pretrained(en2ko)
|
| 14 |
+
ko2en_tokenizer = AutoTokenizer.from_pretrained(ko2en)
|
| 15 |
+
style_tokenizer = AutoTokenizer.from_pretrained(style)
|
| 16 |
|
| 17 |
def translate(source, target, text):
|
| 18 |
+
formats = {"English":"eng_Latn", "Korean":"kor_Hang"}
|
| 19 |
+
src = formats[source]
|
| 20 |
+
tgt = formats[target]
|
| 21 |
+
|
| 22 |
+
if src == "eng_Latn":
|
| 23 |
+
translator = pipeline(
|
| 24 |
+
'translation',
|
| 25 |
+
model=en2ko_model,
|
| 26 |
+
tokenizer=ko2en_tokenizer,
|
| 27 |
+
src_lang=src,
|
| 28 |
+
tgt_lang=tgt,
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
if src == "kor_Hang":
|
| 32 |
+
translator = pipeline(
|
| 33 |
+
'translation',
|
| 34 |
+
model=ko2en_model,
|
| 35 |
+
tokenizer=en2ko_tokenizer,
|
| 36 |
+
src_lang=src,
|
| 37 |
+
tgt_lang=tgt
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
output = translator(text)
|
| 41 |
translated_text = output[0]['translation_text']
|
| 42 |
+
|
| 43 |
return translated_text
|
| 44 |
|
| 45 |
+
title = 'KoTAN Translator & Speech-style converter'
|
| 46 |
+
lang = ['English','Korean']
|
| 47 |
+
|
|
|
|
| 48 |
translator_app = gr.Interface(
|
| 49 |
fn=translate,
|
| 50 |
inputs=[gr.inputs.Dropdown(choices=lang, label='Source Language'), gr.inputs.Dropdown(choices=lang, label='Target Language'), gr.inputs.Textbox(lines=5, label='Text to Translate')],
|
| 51 |
outputs=[gr.outputs.Textbox(label='Translated Text')],
|
| 52 |
title=title,
|
| 53 |
+
description = 'KoTAN: Korean Translation and Augmentation with fine-tuned NLLB. If you want to download as pip package, please visit our github. (https://github.com/KoJLabs/KoTAN)',
|
| 54 |
+
article='Jisu, Kim. Juhwan, Lee',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
enable_queue=True,
|
| 56 |
)
|
| 57 |
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
sentencepiece
|