Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModel | |
import torch | |
import torch.nn.functional as F | |
class JinaEmbeddingWrapper: | |
def __init__(self, model_name="jinaai/jina-embeddings-v3", device=None): | |
self.device = device if device else ("cuda" if torch.cuda.is_available() else "cpu") | |
print(f"🚀 Loading Jina embedding model on {self.device}...") | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
self.model = AutoModel.from_pretrained(model_name, trust_remote_code=True).to(self.device) | |
self.model.eval() | |
print("✅ Jina model loaded.") | |
def embed_query(self, query: str) -> list[float]: | |
inputs = self.tokenizer(query, return_tensors="pt", truncation=True, padding=True).to(self.device) | |
with torch.no_grad(): | |
outputs = self.model(**inputs) | |
embeddings = outputs.last_hidden_state.mean(dim=1) | |
normalized = F.normalize(embeddings, p=2, dim=1) | |
return normalized[0].cpu().tolist() |