File size: 17,323 Bytes
226c7c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import numpy as np
import pycocotools.mask as mask_util
import torch
from cosmos_transfer1.utils import log
sys.path.append("cosmos_transfer1/auxiliary")
import tempfile
from PIL import Image
from sam2.sam2_video_predictor import SAM2VideoPredictor
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
from cosmos_transfer1.auxiliary.sam2.sam2_utils import (
capture_fps,
convert_masks_to_frames,
generate_tensor_from_images,
video_to_frames,
write_video,
)
from cosmos_transfer1.checkpoints import GROUNDING_DINO_MODEL_CHECKPOINT, SAM2_MODEL_CHECKPOINT
def rle_encode(mask: np.ndarray) -> dict:
"""
Encode a boolean mask (of shape (T, H, W)) using the pycocotools RLE format,
matching the format of eff_segmentation.RleMaskSAMv2 (from Yotta).
The procedure is:
1. Convert the mask to a numpy array in Fortran order.
2. Reshape the array to (-1, 1) (i.e. flatten in Fortran order).
3. Call pycocotools.mask.encode on the reshaped array.
4. Return a dictionary with the encoded data and the original mask shape.
"""
mask = np.array(mask, order="F")
# Reshape the mask to (-1, 1) in Fortran order and encode it.
encoded = mask_util.encode(np.array(mask.reshape(-1, 1), order="F"))
return {"data": encoded, "mask_shape": mask.shape}
class VideoSegmentationModel:
def __init__(self, **kwargs):
"""Initialize the model and load all required components."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Initialize SAM2 predictor
self.sam2_predictor = SAM2VideoPredictor.from_pretrained(SAM2_MODEL_CHECKPOINT).to(self.device)
# Initialize GroundingDINO for text-based detection
self.grounding_model_name = kwargs.get("grounding_model", GROUNDING_DINO_MODEL_CHECKPOINT)
self.processor = AutoProcessor.from_pretrained(self.grounding_model_name)
self.grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(self.grounding_model_name).to(
self.device
)
def get_boxes_from_text(self, image_path, text_prompt):
"""Get bounding boxes (and labels) from a text prompt using GroundingDINO."""
image = Image.open(image_path).convert("RGB")
inputs = self.processor(images=image, text=text_prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.grounding_model(**inputs)
# Try with initial thresholds.
results = self.processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.15,
text_threshold=0.25,
target_sizes=[image.size[::-1]],
)
boxes = results[0]["boxes"].cpu().numpy()
scores = results[0]["scores"].cpu().numpy()
labels = results[0].get("labels", None)
if len(boxes) == 0:
print(f"No boxes detected for prompt: '{text_prompt}'. Trying with lower thresholds...")
results = self.processor.post_process_grounded_object_detection(
outputs,
inputs.input_ids,
box_threshold=0.1,
text_threshold=0.1,
target_sizes=[image.size[::-1]],
)
boxes = results[0]["boxes"].cpu().numpy()
scores = results[0]["scores"].cpu().numpy()
labels = results[0].get("labels", None)
if len(boxes) > 0:
print(f"Found {len(boxes)} boxes with scores: {scores}")
# Sort boxes by confidence score in descending order
sorted_indices = np.argsort(scores)[::-1]
boxes = boxes[sorted_indices]
scores = scores[sorted_indices]
if labels is not None:
labels = np.array(labels)[sorted_indices]
else:
print("Still no boxes detected. Consider adjusting the prompt or using box/points mode.")
return {"boxes": boxes, "labels": labels, "scores": scores}
def visualize_frame(self, frame_idx, obj_ids, masks, video_dir, frame_names, visualization_data, save_dir=None):
"""
Process a single frame: load the image, apply the segmentation mask to black out the
detected object(s), and save both the masked frame and the binary mask image.
"""
# Load the frame.
frame_path = os.path.join(video_dir, frame_names[frame_idx])
img = Image.open(frame_path).convert("RGB")
image_np = np.array(img)
# Combine masks from the detection output.
if isinstance(masks, torch.Tensor):
mask_np = (masks[0] > 0.0).cpu().numpy().astype(bool)
combined_mask = mask_np
elif isinstance(masks, dict):
first_mask = next(iter(masks.values()))
combined_mask = np.zeros_like(first_mask, dtype=bool)
for m in masks.values():
combined_mask |= m
else:
combined_mask = None
if combined_mask is not None:
combined_mask = np.squeeze(combined_mask)
# If the mask shape doesn't match the image, resize it.
if combined_mask.shape != image_np.shape[:2]:
mask_img = Image.fromarray((combined_mask.astype(np.uint8)) * 255)
mask_img = mask_img.resize((image_np.shape[1], image_np.shape[0]), resample=Image.NEAREST)
combined_mask = np.array(mask_img) > 127
# Black out the detected region.
image_np[combined_mask] = 0
mask_image = (combined_mask.astype(np.uint8)) * 255
mask_pil = Image.fromarray(mask_image)
if save_dir:
seg_frame_path = os.path.join(save_dir, f"frame_{frame_idx}_segmented.png")
seg_pil = Image.fromarray(image_np)
seg_pil.save(seg_frame_path)
if combined_mask is not None:
mask_save_path = os.path.join(save_dir, f"frame_{frame_idx}_mask.png")
mask_pil.save(mask_save_path)
def sample(self, **kwargs):
"""
Main sampling function for video segmentation.
Returns a list of detections in which each detection contains a phrase and
an RLE-encoded segmentation mask (matching the output of the Grounded SAM model).
"""
video_dir = kwargs.get("video_dir", "")
mode = kwargs.get("mode", "points")
input_data = kwargs.get("input_data", None)
save_dir = kwargs.get("save_dir", None)
visualize = kwargs.get("visualize", False)
# Get frame names (expecting frames named as numbers with .jpg/.jpeg extension).
frame_names = [p for p in os.listdir(video_dir) if os.path.splitext(p)[-1].lower() in [".jpg", ".jpeg"]]
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
state = self.sam2_predictor.init_state(video_path=video_dir)
ann_frame_idx = 0
ann_obj_id = 1
boxes = None
points = None
labels = None
box = None
visualization_data = {"mode": mode, "points": None, "labels": None, "box": None, "boxes": None}
if input_data is not None:
if mode == "points":
points = input_data.get("points")
labels = input_data.get("labels")
frame_idx, obj_ids, masks = self.sam2_predictor.add_new_points_or_box(
inference_state=state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, points=points, labels=labels
)
visualization_data["points"] = points
visualization_data["labels"] = labels
elif mode == "box":
box = input_data.get("box")
frame_idx, obj_ids, masks = self.sam2_predictor.add_new_points_or_box(
inference_state=state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, box=box
)
visualization_data["box"] = box
elif mode == "prompt":
text = input_data.get("text")
first_frame_path = os.path.join(video_dir, frame_names[0])
gd_results = self.get_boxes_from_text(first_frame_path, text)
boxes = gd_results["boxes"]
labels_out = gd_results["labels"]
scores = gd_results["scores"]
log.info(f"scores: {scores}")
if len(boxes) > 0:
legacy_mask = kwargs.get("legacy_mask", False)
if legacy_mask:
# Use only the highest confidence box for legacy mask
log.info(f"using legacy_mask: {legacy_mask}")
frame_idx, obj_ids, masks = self.sam2_predictor.add_new_points_or_box(
inference_state=state, frame_idx=ann_frame_idx, obj_id=ann_obj_id, box=boxes[0]
)
# Update boxes and labels after processing
boxes = boxes[:1]
if labels_out is not None:
labels_out = labels_out[:1]
else:
log.info(f"using new_mask: {legacy_mask}")
for object_id, (box, label) in enumerate(zip(boxes, labels_out)):
frame_idx, obj_ids, masks = self.sam2_predictor.add_new_points_or_box(
inference_state=state, frame_idx=ann_frame_idx, obj_id=object_id, box=box
)
visualization_data["boxes"] = boxes
self.grounding_labels = [str(lbl) for lbl in labels_out] if labels_out is not None else [text]
else:
print("No boxes detected. Exiting.")
return [] # Return empty list if no detections
if visualize:
self.visualize_frame(
frame_idx=ann_frame_idx,
obj_ids=obj_ids,
masks=masks,
video_dir=video_dir,
frame_names=frame_names,
visualization_data=visualization_data,
save_dir=save_dir,
)
video_segments = {} # keys: frame index, values: {obj_id: mask}
for out_frame_idx, out_obj_ids, out_mask_logits in self.sam2_predictor.propagate_in_video(state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy() for i, out_obj_id in enumerate(out_obj_ids)
}
# For propagated frames, visualization_data is not used.
if visualize:
propagate_visualization_data = {
"mode": mode,
"points": None,
"labels": None,
"box": None,
"boxes": None,
}
self.visualize_frame(
frame_idx=out_frame_idx,
obj_ids=out_obj_ids,
masks=video_segments[out_frame_idx],
video_dir=video_dir,
frame_names=frame_names,
visualization_data=propagate_visualization_data,
save_dir=save_dir,
)
# --- Post-process video_segments to produce a list of detections ---
if len(video_segments) == 0:
return []
first_frame_path = os.path.join(video_dir, frame_names[0])
first_frame = np.array(Image.open(first_frame_path).convert("RGB"))
original_shape = first_frame.shape[:2] # (height, width)
object_masks = {} # key: obj_id, value: list of 2D boolean masks
sorted_frame_indices = sorted(video_segments.keys())
for frame_idx in sorted_frame_indices:
segments = video_segments[frame_idx]
for obj_id, mask in segments.items():
mask = np.squeeze(mask)
if mask.ndim != 2:
print(f"Warning: Unexpected mask shape {mask.shape} for object {obj_id} in frame {frame_idx}.")
continue
if mask.shape != original_shape:
mask_img = Image.fromarray(mask.astype(np.uint8) * 255)
mask_img = mask_img.resize((original_shape[1], original_shape[0]), resample=Image.NEAREST)
mask = np.array(mask_img) > 127
if obj_id not in object_masks:
object_masks[obj_id] = []
object_masks[obj_id].append(mask)
detections = []
for obj_id, mask_list in object_masks.items():
mask_stack = np.stack(mask_list, axis=0) # shape: (T, H, W)
# Use our new rle_encode (which now follows the eff_segmentation.RleMaskSAMv2 format)
rle = rle_encode(mask_stack)
if mode == "prompt" and hasattr(self, "grounding_labels"):
phrase = self.grounding_labels[0]
else:
phrase = input_data.get("text", "")
detection = {"phrase": phrase, "segmentation_mask_rle": rle}
detections.append(detection)
return detections
@staticmethod
def parse_points(points_str):
"""Parse a string of points into a numpy array.
Supports a single point ('200,300') or multiple points separated by ';' (e.g., '200,300;100,150').
"""
points = []
for point in points_str.split(";"):
coords = point.split(",")
if len(coords) != 2:
continue
points.append([float(coords[0]), float(coords[1])])
return np.array(points, dtype=np.float32)
@staticmethod
def parse_labels(labels_str):
"""Parse a comma-separated string of labels into a numpy array."""
return np.array([int(x) for x in labels_str.split(",")], dtype=np.int32)
@staticmethod
def parse_box(box_str):
"""Parse a comma-separated string of 4 box coordinates into a numpy array."""
return np.array([float(x) for x in box_str.split(",")], dtype=np.float32)
def __call__(
self,
input_video,
output_video=None,
output_tensor=None,
prompt=None,
box=None,
points=None,
labels=None,
weight_scaler=None,
binarize_video=False,
legacy_mask=False,
):
log.info(
f"Processing video: {input_video} to generate segmentation video: {output_video} segmentation tensor: {output_tensor}"
)
assert os.path.exists(input_video)
# Prepare input data based on the selected mode.
if points is not None:
mode = "points"
input_data = {"points": self.parse_points(points), "labels": self.parse_labels(labels)}
elif box is not None:
mode = "box"
input_data = {"box": self.parse_box(box)}
elif prompt is not None:
mode = "prompt"
input_data = {"text": prompt}
with tempfile.TemporaryDirectory() as temp_input_dir:
fps = capture_fps(input_video)
video_to_frames(input_video, temp_input_dir)
with tempfile.TemporaryDirectory() as temp_output_dir:
masks = self.sample(
video_dir=temp_input_dir,
mode=mode,
input_data=input_data,
save_dir=str(temp_output_dir),
visualize=True,
legacy_mask=legacy_mask,
)
if output_video:
os.makedirs(os.path.dirname(output_video), exist_ok=True)
frames = convert_masks_to_frames(masks)
if binarize_video:
frames = np.any(frames > 0, axis=-1).astype(np.uint8) * 255
write_video(frames, output_video, fps)
if output_tensor:
generate_tensor_from_images(
temp_output_dir, output_tensor, fps, "mask", weight_scaler=weight_scaler
)
|