File size: 14,740 Bytes
2c1096f
34f9cc2
 
 
 
 
 
 
2c1096f
5291f6e
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
b8f2970
 
34f9cc2
b8f2970
34f9cc2
b8f2970
 
 
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
 
34f9cc2
 
 
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
2c1096f
b8f2970
34f9cc2
 
 
b8f2970
 
 
 
34f9cc2
 
 
 
 
 
 
 
 
 
 
 
856e9f4
 
34f9cc2
8d44ca7
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
34f9cc2
8d44ca7
 
 
34f9cc2
8d44ca7
 
 
 
 
34f9cc2
 
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c1096f
5291f6e
2a852a8
34f9cc2
8d44ca7
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
 
 
 
 
 
34f9cc2
8d44ca7
 
 
 
 
 
2c1096f
fc08977
5291f6e
34f9cc2
 
 
 
 
 
 
 
5291f6e
34f9cc2
5291f6e
 
 
 
861378a
34f9cc2
5291f6e
 
 
 
 
34f9cc2
 
 
 
 
 
 
 
 
 
 
738845e
34f9cc2
 
738845e
5291f6e
738845e
 
34f9cc2
 
8d44ca7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
import os
import random
import json
import re
import traceback
import time
import torch
import gradio as gr
from transformers import AutoTokenizer, T5ForConditionalGeneration
from quiz_logic.wikipedia_utils import fetch_context, extract_keywords
from quiz_logic.state import (
    quiz_data,
    current_question_index,
    score,
    user_answer,
    set_user_answer,
    reset_user_answer,
    increment_score,
    increment_index,
)

os.environ["TOKENIZERS_PARALLELISM"] = "false"
cache_dir = "/tmp/hf_cache"
os.makedirs(cache_dir, exist_ok=True)
T5_MODEL_ID = os.environ.get("T5_MODEL_ID", "google/flan-t5-small")

_device = None
_t5_tokenizer = None
_t5_model = None

QUESTION_TEMPLATES = {
    "definition": "What is {concept}?",
    "function": "What is the primary purpose of {concept}?",
    "example": "Which of the following is an example of {concept}?",
    "comparison": "How does {concept1} differ from {concept2}?",
    "application": "When would you use {concept}?",
    "characteristic": "Which characteristic best describes {concept}?",
    "process": "What happens when {concept} is applied?",
    "category": "Which category does {concept} belong to?"
}

IMPROVED_PROMPT_TEMPLATES = {
    "python": """Create a multiple choice question about Python programming.
Topic: {focus}
Context: {context}
Difficulty: {level}

Generate a clear, specific question with 4 distinct options where only one is correct.
Focus on practical knowledge, syntax, or concepts.

Format:
Question: [specific question about {focus}]
A) [correct answer]
B) [plausible wrong answer]
C) [plausible wrong answer]  
D) [plausible wrong answer]
Answer: A""",
    
    "general": """Create a multiple choice question about {topic}.
Focus area: {focus}
Context: {context}
Difficulty: {level}

Generate a clear, educational question with 4 distinct options where only one is correct.
Make the question specific and the wrong answers plausible but clearly incorrect.

Format:
Question: [specific question about {focus}]
A) [correct answer]
B) [realistic wrong answer]
C) [realistic wrong answer]
D) [realistic wrong answer]
Answer: A"""
}

FALLBACK_QUESTIONS = {
    "python": [
        {
            "question": "Which keyword is used to define a function in Python?",
            "options": ["def", "function", "define", "func"],
            "answer": "def",
            "explanation": "The 'def' keyword is used to define functions in Python."
        },
        {
            "question": "What data type is used to store a sequence of characters in Python?",
            "options": ["str", "string", "text", "char"],
            "answer": "str",
            "explanation": "In Python, strings are represented by the 'str' data type."
        },
        {
            "question": "Which operator is used for integer division in Python?",
            "options": ["//", "/", "%", "**"],
            "answer": "//",
            "explanation": "The '//' operator performs floor division (integer division) in Python."
        }
    ],
    "general": [
        {
            "question": "What is the capital of France?",
            "options": ["Paris", "London", "Berlin", "Rome"],
            "answer": "Paris",
            "explanation": "Paris is the capital and largest city of France."
        }
    ]
}

def get_device():
    global _device
    if _device is None:
        _device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    return _device

def get_t5_tokenizer_and_model():
    global _t5_tokenizer, _t5_model
    device = get_device()
    if _t5_tokenizer is None or _t5_model is None:
        try:
            _t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL_ID, cache_dir=cache_dir, use_fast=True)
            _t5_model = T5ForConditionalGeneration.from_pretrained(T5_MODEL_ID, cache_dir=cache_dir)
            _t5_model.to(device)
            _t5_model.eval()
        except Exception:
            _t5_tokenizer = AutoTokenizer.from_pretrained(T5_MODEL_ID, use_fast=True)
            _t5_model = T5ForConditionalGeneration.from_pretrained(T5_MODEL_ID)
            _t5_model.to(device)
            _t5_model.eval()
    return _t5_tokenizer, _t5_model

def _parse_raw_question(text):
    text = text.replace("\r", "\n").strip()
    
    question_match = re.search(r'Question:\s*(.+?)(?=\n[A-D]\)|$)', text, re.S)
    if question_match:
        question = question_match.group(1).strip()
    else:
        lines = [line.strip() for line in text.split('\n') if line.strip()]
        if lines:
            question = lines[0]
        else:
            return None
    
    options = []
    option_pattern = r'^([A-D])\)\s*(.+)$'
    for line in text.split('\n'):
        match = re.match(option_pattern, line.strip())
        if match:
            options.append(match.group(2).strip())
    
    if len(options) < 4:
        return None
    
    answer_match = re.search(r'Answer:\s*([A-D])', text)
    if answer_match:
        answer_index = ord(answer_match.group(1)) - ord('A')
        if 0 <= answer_index < len(options):
            answer = options[answer_index]
        else:
            answer = options[0]
    else:
        answer = options[0]
    
    return {
        "question": question,
        "options": options[:4],
        "answer": answer,
        "explanation": f"The correct answer is {answer}."
    }

def _validate_question_quality(qobj):
    if not qobj or not isinstance(qobj, dict):
        return False
    
    question = qobj.get("question", "")
    options = qobj.get("options", [])
    answer = qobj.get("answer", "")
    
    if len(question.split()) < 5:
        return False
    
    if len(options) != 4:
        return False
    
    if answer not in options:
        return False
    
    unique_options = set(opt.lower().strip() for opt in options)
    if len(unique_options) != 4:
        return False
    
    for opt in options:
        if len(opt.strip()) < 2:
            return False
    
    return True

def _create_smart_distractors(correct_answer, topic, context):
    distractors = []
    
    if "python" in topic.lower():
        python_distractors = {
            "def": ["function", "define", "method"],
            "str": ["string", "text", "varchar"],
            "int": ["integer", "number", "num"],
            "list": ["array", "vector", "sequence"],
            "dict": ["map", "hash", "object"],
            "True": ["true", "TRUE", "1"],
            "False": ["false", "FALSE", "0"],
            "None": ["null", "NULL", "nil"],
            "print": ["console.log", "echo", "write"],
            "len": ["length", "size", "count"]
        }
        
        if correct_answer in python_distractors:
            distractors.extend(python_distractors[correct_answer])
    
    words = context.lower().split()
    for word in words:
        if (word != correct_answer.lower() and 
            len(word) > 2 and 
            word.isalpha() and 
            len(distractors) < 6):
            distractors.append(word.capitalize())
    
    generic_distractors = ["Option A", "Option B", "Option C", "Not applicable", "All of the above", "None of the above"]
    distractors.extend(generic_distractors)
    
    final_distractors = []
    for d in distractors:
        if d.lower() != correct_answer.lower() and d not in final_distractors:
            final_distractors.append(d)
        if len(final_distractors) >= 3:
            break
    
    return final_distractors[:3]

def _generate_structured_question(topic, focus, context, difficulty):
    topic_lower = topic.lower()
    
    if "python" in topic_lower:
        if "function" in focus.lower():
            return {
                "question": "Which keyword is used to define a function in Python?",
                "options": ["def", "function", "define", "func"],
                "answer": "def",
                "explanation": "The 'def' keyword is the standard way to define functions in Python."
            }
        elif "string" in focus.lower() or "str" in focus.lower():
            return {
                "question": "What method would you use to convert a string to uppercase in Python?",
                "options": ["upper()", "toUpperCase()", "uppercase()", "UPPER()"],
                "answer": "upper()",
                "explanation": "The upper() method returns a string with all characters converted to uppercase."
            }
        elif "list" in focus.lower():
            return {
                "question": "Which method adds an element to the end of a Python list?",
                "options": ["append()", "add()", "insert()", "push()"],
                "answer": "append()",
                "explanation": "The append() method adds a single element to the end of a list."
            }
    
    template_type = random.choice(list(QUESTION_TEMPLATES.keys()))
    question_template = QUESTION_TEMPLATES[template_type]
    
    if "{concept}" in question_template:
        question = question_template.format(concept=focus)
    elif "{concept1}" in question_template:
        concepts = focus.split()
        if len(concepts) >= 2:
            question = question_template.format(concept1=concepts[0], concept2=concepts[1])
        else:
            question = f"What is {focus}?"
    else:
        question = f"What is {focus}?"
    
    correct_answer = focus.capitalize()
    distractors = _create_smart_distractors(correct_answer, topic, context)
    
    while len(distractors) < 3:
        distractors.append(f"Not {correct_answer}")
    
    options = [correct_answer] + distractors[:3]
    random.shuffle(options)
    
    return {
        "question": question,
        "options": options,
        "answer": correct_answer,
        "explanation": f"{correct_answer} is the correct answer based on the given context."
    }

def generate_questions(topic, n_questions=3, difficulty="medium"):
    try:
        quiz_data.clear()
        
        context = fetch_context(topic) or f"This is about {topic}"
        keywords = extract_keywords(context, top_k=max(n_questions * 2, 8)) or [topic]
        
        tokenizer, model = get_t5_tokenizer_and_model()
        
        successful_questions = 0
        attempts = 0
        max_attempts = n_questions * 3
        
        topic_lower = topic.lower()
        prompt_template = IMPROVED_PROMPT_TEMPLATES.get("python" if "python" in topic_lower else "general")
        
        while successful_questions < n_questions and attempts < max_attempts:
            focus = random.choice(keywords) if keywords else topic
            
            if attempts < n_questions:
                prompt = prompt_template.format(
                    topic=topic,
                    focus=focus,
                    context=context[:600],
                    level=difficulty
                )
                
                inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
                inputs = {k: v.to(get_device()) for k, v in inputs.items()}
                
                with torch.no_grad():
                    outputs = model.generate(
                        **inputs,
                        max_new_tokens=200,
                        num_beams=5,
                        do_sample=True,
                        temperature=0.8,
                        top_p=0.9,
                        no_repeat_ngram_size=3,
                        early_stopping=True
                    )
                
                generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
                parsed_question = _parse_raw_question(generated_text)
                
                if parsed_question and _validate_question_quality(parsed_question):
                    quiz_data.append(parsed_question)
                    successful_questions += 1
                    attempts += 1
                    continue
            
            structured_question = _generate_structured_question(topic, focus, context, difficulty)
            if _validate_question_quality(structured_question):
                quiz_data.append(structured_question)
                successful_questions += 1
            
            attempts += 1
        
        while successful_questions < n_questions:
            fallback_pool = FALLBACK_QUESTIONS.get("python" if "python" in topic_lower else "general", FALLBACK_QUESTIONS["general"])
            fallback_q = random.choice(fallback_pool)
            quiz_data.append(fallback_q.copy())
            successful_questions += 1
        
        return len(quiz_data) > 0
        
    except Exception as e:
        print(f"Error generating questions: {e}")
        traceback.print_exc()
        
        fallback_pool = FALLBACK_QUESTIONS.get("python" if "python" in topic.lower() else "general", FALLBACK_QUESTIONS["general"])
        for i in range(min(n_questions, len(fallback_pool))):
            quiz_data.append(fallback_pool[i].copy())
        
        return len(quiz_data) > 0

def get_question_ui():
    reset_user_answer()
    if not quiz_data or current_question_index[0] >= len(quiz_data):
        return (
            gr.update(value="Quiz finished!"),
            gr.update(choices=[], value=None, interactive=False, visible=False),
            gr.update(value="", visible=False),
            gr.update(visible=False),
            gr.update(value=f"🎉 Quiz finished! Your score: {score[0]}/{len(quiz_data)}", visible=True)
        )
    q = quiz_data[current_question_index[0]]
    question_display = f"### Question {current_question_index[0] + 1}\n{q['question']}"
    return (
        gr.update(value=question_display, visible=True),
        gr.update(choices=q["options"], value=None, interactive=True, visible=True),
        gr.update(value="", visible=False),
        gr.update(visible=False),
        gr.update(value="", visible=False)
    )

def next_question():
    increment_index()
    if current_question_index[0] >= len(quiz_data):
        return f"🎉 Quiz finished! Your score: {score[0]}/{len(quiz_data)}"
    q = quiz_data[current_question_index[0]]
    return q["question"], q["options"]

def on_select(selected_option):
    set_user_answer(selected_option)
    q = quiz_data[current_question_index[0]]
    correct = q.get("answer")
    if isinstance(correct, int):
        correct = q["options"][correct]
    is_correct = str(selected_option).strip().lower() == str(correct).strip().lower()
    
    if is_correct:
        increment_score()
        feedback = "Correct! Well done!"
    else:
        feedback = f"The correct answer is: {correct}"
    
    last = (current_question_index[0] == len(quiz_data) - 1)
    next_label = "View scores" if last else "Next question"
    return feedback, True, next_label