Spaces:
Sleeping
Sleeping
File size: 22,487 Bytes
e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af 5e4987c e2152af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
import gradio as gr
from datasets import load_dataset, get_dataset_config_names
import random
from typing import List, Tuple
import logging
# Set up logging
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
# Popular evaluation datasets with their configurations
EVAL_DATASETS = {
"openai/gsm8k": {
"name": "GSM8K - Grade School Math",
"type": "qa",
"config": "main",
"question_field": "question",
"answer_field": "answer",
"split": "train",
},
"cais/mmlu": {
"name": "MMLU - Massive Multitask Language Understanding",
"type": "multiple_choice",
"config": "all",
"question_field": "question",
"choices_field": "choices",
"answer_field": "answer",
"split": "test",
},
"allenai/ai2_arc": {
"name": "AI2 ARC - Science Questions",
"type": "multiple_choice",
"config": "ARC-Challenge",
"question_field": "question",
"choices_field": "choices",
"answer_field": "answerKey",
"split": "train",
},
"Rowan/hellaswag": {
"name": "HellaSwag - Commonsense NLI",
"type": "multiple_choice",
"question_field": "ctx",
"choices_field": "endings",
"answer_field": "label",
"split": "train",
},
"allenai/winogrande": {
"name": "WinoGrande - Winograd Schema",
"type": "binary_choice",
"config": "winogrande_xl",
"question_field": "sentence",
"option1_field": "option1",
"option2_field": "option2",
"answer_field": "answer",
"split": "train",
},
"google/boolq": {
"name": "BoolQ - Boolean Questions",
"type": "true_false",
"question_field": "question",
"context_field": "passage",
"answer_field": "answer",
"split": "train",
},
"rajpurkar/squad": {
"name": "SQuAD - Reading Comprehension",
"type": "extractive_qa",
"question_field": "question",
"context_field": "context",
"answer_field": "answers",
"split": "train",
},
"allenai/piqa": {
"name": "PIQA - Physical Reasoning",
"type": "binary_choice",
"question_field": "goal",
"option1_field": "sol1",
"option2_field": "sol2",
"answer_field": "label",
"split": "train",
},
}
class QuizApp:
def __init__(self):
self.current_dataset = None
self.current_dataset_name = None
self.questions = []
self.current_question_idx = 0
self.score = 0
self.total_questions = 0
def load_dataset_questions(self, dataset_name: str, num_questions: int = 10):
"""Load random questions from the selected dataset"""
try:
config = EVAL_DATASETS[dataset_name]
# Try to load dataset with config if specified
try:
if "config" in config:
dataset = load_dataset(
dataset_name, config["config"], split=config["split"]
)
else:
dataset = load_dataset(dataset_name, split=config["split"])
except ValueError as e:
# If config is missing, try to get available configs
if "Config name is missing" in str(e):
configs = get_dataset_config_names(dataset_name)
# Use first config or "all" if available
if "all" in configs:
selected_config = "all"
else:
selected_config = configs[0]
print(
f"Auto-selected config '{selected_config}' for {dataset_name}"
)
dataset = load_dataset(
dataset_name, selected_config, split=config["split"]
)
else:
raise e
# Sample random questions
total_examples = len(dataset)
num_questions = min(num_questions, total_examples)
indices = random.sample(range(total_examples), num_questions)
self.questions = []
for idx in indices:
example = dataset[idx]
self.questions.append(example)
self.current_dataset = config
self.current_dataset_name = dataset_name
self.current_question_idx = 0
self.score = 0
self.total_questions = len(self.questions)
return True, f"Loaded {num_questions} questions from {config['name']}"
except Exception as e:
return False, f"Error loading dataset: {str(e)}"
def get_current_question(self) -> Tuple[str, List[str], str]:
"""Get the current question formatted for display"""
if not self.questions or self.current_question_idx >= len(self.questions):
return "", [], ""
question_data = self.questions[self.current_question_idx]
config = self.current_dataset
logging.info(f"\n{'=' * 60}")
logging.info(f"Dataset: {self.current_dataset_name}")
logging.info(f"Question {self.current_question_idx + 1}/{self.total_questions}")
logging.info(f"Raw question data: {repr(question_data)}")
logging.info(f"{'=' * 60}\n")
# Format question based on dataset type
question_type = config["type"]
if question_type == "multiple_choice":
question = question_data[config["question_field"]]
choices = question_data[config["choices_field"]]
if config["answer_field"] in question_data:
answer = question_data[config["answer_field"]]
else:
answer = ""
# Format choices with letters
formatted_choices = [
f"{chr(65 + i)}. {choice}" for i, choice in enumerate(choices)
]
return question, formatted_choices, question_type
elif question_type == "true_false":
question = question_data[config["question_field"]]
if "context_field" in config:
context = question_data[config["context_field"]]
question = f"Context: {context}\n\nQuestion: {question}"
return question, ["True", "False"], question_type
elif question_type == "binary_choice":
question = question_data[config["question_field"]]
option1 = question_data[config["option1_field"]]
option2 = question_data[config["option2_field"]]
return question, [f"A. {option1}", f"B. {option2}"], question_type
elif question_type == "qa" or question_type == "extractive_qa":
question = question_data[config["question_field"]]
if "context_field" in config and config["context_field"] in question_data:
context = question_data[config["context_field"]]
question = f"Context: {context[:500]}...\n\nQuestion: {question}"
return question, [], question_type
return "", [], ""
def format_answer(self, answer: str, dataset_name: str) -> str:
"""Format answer based on dataset type for better readability"""
import re
# Convert <<equation>> to show the math clearly
# Extract the equation and its result, show just the result with equation in parentheses
def format_equation(match):
equation = match.group(1)
# Check if it's in format "calculation=result"
if '=' in equation:
parts = equation.split('=')
if len(parts) == 2:
calculation, result = parts[0], parts[1]
return f"{result} (={calculation})"
return f"[{equation}]"
answer = re.sub(r"<<([^>]+)>>", format_equation, answer)
# Dataset-specific formatting
if dataset_name == "openai/gsm8k":
# Format the final answer line
answer = answer.replace("####", "\n\nFinal Answer:")
# Ensure proper line breaks after periods for readability
answer = re.sub(r'\. (?=[A-Z])', '.\n', answer)
return answer
def check_answer(self, user_answer: str) -> Tuple[bool, str]:
"""Check if the user's answer is correct"""
if not self.questions or self.current_question_idx >= len(self.questions):
return False, "No question available"
question_data = self.questions[self.current_question_idx]
config = self.current_dataset
question_type = config["type"]
if question_type == "multiple_choice":
correct_answer_idx = question_data[config["answer_field"]]
# Handle both numeric and letter answers
if isinstance(correct_answer_idx, int):
correct_letter = chr(65 + correct_answer_idx)
else:
correct_letter = str(correct_answer_idx)
user_letter = user_answer.strip().upper()[0] if user_answer else ""
is_correct = user_letter == correct_letter
if is_correct:
return True, 'β
Correct!'
else:
choices = question_data[config["choices_field"]]
correct_choice = (
choices[correct_answer_idx]
if isinstance(correct_answer_idx, int)
else correct_answer_idx
)
logging.info(f"Raw answer (multiple choice): {repr(correct_choice)}")
formatted_answer = self.format_answer(
correct_choice, self.current_dataset_name
)
return (
False,
f'β Incorrect\n\nThe correct answer was {correct_letter}:\n\n{formatted_answer}',
)
elif question_type == "true_false":
correct_answer = question_data[config["answer_field"]]
user_bool = user_answer.lower().strip() == "true"
is_correct = user_bool == correct_answer
if is_correct:
return True, 'β
Correct!'
else:
return (
False,
f'β Incorrect\n\nThe correct answer was {correct_answer}',
)
elif question_type == "binary_choice":
correct_answer_idx = question_data[config["answer_field"]]
user_idx = 0 if user_answer.strip().upper().startswith("A") else 1
is_correct = user_idx == correct_answer_idx
if is_correct:
return True, 'β
Correct!'
else:
correct_letter = "A" if correct_answer_idx == 0 else "B"
option_field = (
config["option1_field"]
if correct_answer_idx == 0
else config["option2_field"]
)
correct_option = question_data[option_field]
logging.info(f"Raw answer (binary choice): {repr(correct_option)}")
formatted_answer = self.format_answer(
correct_option, self.current_dataset_name
)
return (
False,
f'β Incorrect\n\nThe correct answer was {correct_letter}:\n\n{formatted_answer}',
)
elif question_type in ["qa", "extractive_qa"]:
# For QA, we'll do a simple check - in real app, you'd want more sophisticated matching
correct_answer = question_data[config["answer_field"]]
if isinstance(correct_answer, dict) and "text" in correct_answer:
correct_answer = (
correct_answer["text"][0] if correct_answer["text"] else ""
)
elif isinstance(correct_answer, list) and len(correct_answer) > 0:
correct_answer = (
correct_answer[0]["text"]
if isinstance(correct_answer[0], dict)
else str(correct_answer[0])
)
else:
correct_answer = str(correct_answer)
# Extract final answer for GSM8K and similar datasets
import re
# For GSM8K, extract the final answer after ####
if "####" in correct_answer:
final_answer_match = re.search(r"####\s*(.+)", correct_answer)
if final_answer_match:
final_answer = final_answer_match.group(1).strip()
else:
final_answer = correct_answer
else:
final_answer = correct_answer
# First check if user answer is empty
if not user_answer or not user_answer.strip():
is_correct = False
else:
# Extract numbers from both answers for comparison
correct_numbers = re.findall(r"-?\d+\.?\d*", final_answer)
user_numbers = re.findall(r"-?\d+\.?\d*", user_answer)
# Check if answers match
is_correct = False
# If both have numbers, compare the numbers
if correct_numbers and user_numbers:
# Convert to float for comparison to handle decimals
try:
correct_num = float(
correct_numbers[-1]
) # Take the last number as final answer
user_num = float(user_numbers[-1]) # Take the last number from user
is_correct = (
abs(correct_num - user_num) < 0.0001
) # Small tolerance for float comparison
except ValueError:
# Fall back to string comparison
is_correct = correct_numbers[-1] == user_numbers[-1]
elif correct_numbers and not user_numbers:
# If correct answer has numbers but user answer doesn't, it's wrong
is_correct = False
else:
# Fall back to substring matching for non-numeric answers
# But ensure both strings are non-empty
is_correct = (
user_answer.lower().strip() in correct_answer.lower()
or correct_answer.lower() in user_answer.lower().strip()
) and len(user_answer.strip()) > 0
if is_correct:
return True, 'β
Correct!'
else:
logging.info(f"Raw answer (QA): {repr(correct_answer)}")
logging.info(f"Extracted final answer: {repr(final_answer)}")
logging.info(
f"Correct numbers: {correct_numbers}, User numbers: {user_numbers}"
)
formatted_answer = self.format_answer(
correct_answer, self.current_dataset_name
)
# Debug: log the formatted answer
logging.info(f"Formatted answer with LaTeX: {repr(formatted_answer)}")
return (
False,
f'β Incorrect\n\nThe correct answer was:\n\n{formatted_answer}',
)
return False, "Unknown question type"
# Create global quiz app instance
quiz_app = QuizApp()
def create_dataset_display():
"""Create the dataset listing display"""
dataset_info = []
for dataset_id, config in EVAL_DATASETS.items():
dataset_info.append(
f"**{config['name']}**\n- Dataset: {dataset_id}\n- Type: {config['type']}"
)
return "\n\n".join(dataset_info)
def start_quiz(dataset_choice: str, num_questions: int):
"""Start a new quiz with the selected dataset"""
# Extract dataset ID from the choice
dataset_id = None
for did, config in EVAL_DATASETS.items():
if config["name"] in dataset_choice:
dataset_id = did
break
if not dataset_id:
return (
"Please select a dataset",
gr.update(visible=False), # question_display
gr.update(visible=False), # answer_radio
gr.update(visible=False), # answer_textbox
gr.update(visible=False), # submit_button
gr.update(visible=False), # progress_text
)
success, message = quiz_app.load_dataset_questions(dataset_id, num_questions)
if success:
question, choices, q_type = quiz_app.get_current_question()
if q_type in ["multiple_choice", "true_false", "binary_choice"]:
return (
message,
gr.update(value=question, visible=True), # question_display
gr.update(choices=choices, visible=True, value=None), # answer_radio
gr.update(visible=False), # answer_textbox
gr.update(visible=True), # submit_button
gr.update(value=f"Question 1/{quiz_app.total_questions}", visible=True), # progress_text
)
else:
return (
message,
gr.update(value=question, visible=True), # question_display
gr.update(visible=False), # answer_radio
gr.update(visible=True, value=""), # answer_textbox
gr.update(visible=True), # submit_button
gr.update(value=f"Question 1/{quiz_app.total_questions}", visible=True), # progress_text
)
else:
return (
message,
gr.update(visible=False), # question_display
gr.update(visible=False), # answer_radio
gr.update(visible=False), # answer_textbox
gr.update(visible=False), # submit_button
gr.update(visible=False), # progress_text
)
def submit_answer(answer_choice, answer_text):
"""Submit answer and show feedback"""
# Determine which answer to use
if answer_choice:
answer = answer_choice
else:
answer = answer_text
is_correct, feedback = quiz_app.check_answer(answer)
if is_correct:
quiz_app.score += 1
return gr.update(value=feedback, visible=True), gr.update(visible=True)
def next_question():
"""Move to the next question"""
quiz_app.current_question_idx += 1
if quiz_app.current_question_idx >= quiz_app.total_questions:
# Quiz complete
final_score = f'π Quiz Complete!\n\nYour score: {quiz_app.score}/{quiz_app.total_questions} ({quiz_app.score / quiz_app.total_questions * 100:.1f}%)'
return (
gr.update(value=final_score, visible=True),
"",
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
"Quiz Complete",
)
question, choices, q_type = quiz_app.get_current_question()
if q_type in ["multiple_choice", "true_false", "binary_choice"]:
return (
gr.update(value="", visible=False), # Clear feedback
gr.update(value=question), # question_display
gr.update(choices=choices, visible=True, value=None),
gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(value=f"Question {quiz_app.current_question_idx + 1}/{quiz_app.total_questions}"),
)
else:
return (
gr.update(value="", visible=False), # Clear feedback
gr.update(value=question), # question_display
gr.update(visible=False),
gr.update(visible=True, value=""),
gr.update(visible=True),
gr.update(visible=False),
gr.update(value=f"Question {quiz_app.current_question_idx + 1}/{quiz_app.total_questions}"),
)
# Create Gradio interface
with gr.Blocks(title="HuggingFace Evaluation Dataset Quiz") as demo:
gr.Markdown("# π€ Evaluation Dataset Quiz")
gr.Markdown(
"Test yourself with questions from popular HuggingFace evaluation datasets!"
)
# Dataset Selection Section
with gr.Row():
dataset_dropdown = gr.Dropdown(
choices=[config["name"] for config in EVAL_DATASETS.values()],
label="Select Dataset",
value=list(EVAL_DATASETS.values())[0]["name"],
)
num_questions_slider = gr.Slider(
minimum=5, maximum=20, value=10, step=1, label="Number of Questions"
)
start_button = gr.Button("Start Quiz", variant="primary")
status_message = gr.Textbox(label="Status", interactive=False)
# Quiz Section - shown when quiz starts
gr.Markdown("---") # Separator
progress_text = gr.Textbox(label="Progress", value="0/0", interactive=False, visible=False)
question_display = gr.Textbox(label="Question", lines=5, interactive=False, visible=False)
# Answer inputs (one will be visible at a time)
answer_radio = gr.Radio(label="Select your answer", visible=False)
answer_textbox = gr.Textbox(label="Type your answer (Raw number)", visible=False)
submit_button = gr.Button("Submit Answer", variant="primary", visible=False)
feedback_display = gr.Textbox(
label="Feedback",
visible=False,
lines=10,
max_lines=20,
interactive=False
)
next_button = gr.Button("Next Question", visible=False)
# Connect events
start_button.click(
start_quiz,
inputs=[dataset_dropdown, num_questions_slider],
outputs=[
status_message,
question_display,
answer_radio,
answer_textbox,
submit_button,
progress_text,
],
)
submit_button.click(
submit_answer,
inputs=[answer_radio, answer_textbox],
outputs=[feedback_display, next_button],
)
next_button.click(
next_question,
outputs=[
feedback_display,
question_display,
answer_radio,
answer_textbox,
submit_button,
next_button,
progress_text,
],
)
if __name__ == "__main__":
demo.launch()
|