File size: 29,653 Bytes
4c7b631
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
<!DOCTYPE html>
<html lang="en"><head>
  <meta charset="utf-8">
  <meta http-equiv="X-UA-Compatible" content="IE=edge">
  <meta name="viewport" content="width=device-width, initial-scale=1"><link rel="shortcut icon" type="image/x-icon" href="/narsil.github.io/favicon.ico"><!-- Begin Jekyll SEO tag v2.6.1 -->
<title>Model based encodings | Narsil</title>
<meta name="generator" content="Jekyll v3.8.5" />
<meta property="og:title" content="Model based encodings" />
<meta name="author" content="nicolas" />
<meta property="og:locale" content="en_US" />
<meta name="description" content="How to use BPE without this hardcoded algorithm" />
<meta property="og:description" content="How to use BPE without this hardcoded algorithm" />
<link rel="canonical" href="http://localhost:4000/narsil.github.io/ml/nlp/2019/05/16/model-based-bpe-encodings.html" />
<meta property="og:url" content="http://localhost:4000/narsil.github.io/ml/nlp/2019/05/16/model-based-bpe-encodings.html" />
<meta property="og:site_name" content="Narsil" />
<meta property="og:type" content="article" />
<meta property="article:published_time" content="2019-05-16T00:00:00+02:00" />
<script type="application/ld+json">
{"description":"How to use BPE without this hardcoded algorithm","author":{"@type":"Person","name":"nicolas"},"mainEntityOfPage":{"@type":"WebPage","@id":"http://localhost:4000/narsil.github.io/ml/nlp/2019/05/16/model-based-bpe-encodings.html"},"@type":"BlogPosting","url":"http://localhost:4000/narsil.github.io/ml/nlp/2019/05/16/model-based-bpe-encodings.html","headline":"Model based encodings","dateModified":"2019-05-16T00:00:00+02:00","datePublished":"2019-05-16T00:00:00+02:00","@context":"https://schema.org"}</script>
<!-- End Jekyll SEO tag -->

  <link href="https://unpkg.com/@primer/css/dist/primer.css" rel="stylesheet" />
  <link rel="stylesheet" href="/narsil.github.io/assets/main.css">
  <link rel="stylesheet" href="//use.fontawesome.com/releases/v5.0.7/css/all.css"><link type="application/atom+xml" rel="alternate" href="http://localhost:4000/narsil.github.io/feed.xml" title="Narsil" />
    <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.css" integrity="sha384-zB1R0rpPzHqg7Kpt0Aljp8JPLqbXI3bhnPWROx27a9N0Ll6ZP/+DiW/UqRcLbRjq" crossorigin="anonymous">
    <script type="text/javascript" async src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-MML-AM_CHTML"> </script>
    <script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/katex.min.js" integrity="sha384-y23I5Q6l+B6vatafAwxRu/0oK/79VlbSz7Q9aiSZUvyWYIYsd+qj+o24G5ZU2zJz" crossorigin="anonymous"></script>
    <script defer src="https://cdn.jsdelivr.net/npm/katex@0.11.1/dist/contrib/auto-render.min.js" integrity="sha384-kWPLUVMOks5AQFrykwIup5lo0m3iMkkHrD0uJ4H5cjeGihAutqP0yW0J6dpFiVkI" crossorigin="anonymous"></script>
    <script>
      document.addEventListener("DOMContentLoaded", function() {
        renderMathInElement( document.body, {
          delimiters: [
            {left: "$$", right: "$$", display: true},
            {left: "[%", right: "%]", display: true},
            {left: "$", right: "$", display: false}
          ]}
        );
      });
    </script>
  

  <script>
  function wrap_img(fn) {
    if (document.attachEvent ? document.readyState === "complete" : document.readyState !== "loading") {
        var elements = document.querySelectorAll(".post img");
        Array.prototype.forEach.call(elements, function(el, i) {
            if (el.getAttribute("title")) {
                const caption = document.createElement('figcaption');
                var node = document.createTextNode(el.getAttribute("title"));
                caption.appendChild(node);
                const wrapper = document.createElement('figure');
                wrapper.className = 'image';
                el.parentNode.insertBefore(wrapper, el);
                el.parentNode.removeChild(el);
                wrapper.appendChild(el);
                wrapper.appendChild(caption);
            }
        });
    } else { document.addEventListener('DOMContentLoaded', fn); }
  }
  window.onload = wrap_img;
  </script>

  <script>
    document.addEventListener("DOMContentLoaded", function(){
      // add link icon to anchor tags
      var elem = document.querySelectorAll(".anchor-link")
      elem.forEach(e => (e.innerHTML = '<i class="fas fa-link fa-xs"></i>'));
      // remove paragraph tags in rendered toc (happens from notebooks)
      var toctags = document.querySelectorAll(".toc-entry")
      toctags.forEach(e => (e.firstElementChild.innerText = e.firstElementChild.innerText.replace('¶', '')))
    });
  </script>
</head><body><header class="site-header" role="banner">

  <div class="wrapper"><a class="site-title" rel="author" href="/narsil.github.io/">Narsil</a><nav class="site-nav">
        <input type="checkbox" id="nav-trigger" class="nav-trigger" />
        <label for="nav-trigger">
          <span class="menu-icon">
            <svg viewBox="0 0 18 15" width="18px" height="15px">
              <path d="M18,1.484c0,0.82-0.665,1.484-1.484,1.484H1.484C0.665,2.969,0,2.304,0,1.484l0,0C0,0.665,0.665,0,1.484,0 h15.032C17.335,0,18,0.665,18,1.484L18,1.484z M18,7.516C18,8.335,17.335,9,16.516,9H1.484C0.665,9,0,8.335,0,7.516l0,0 c0-0.82,0.665-1.484,1.484-1.484h15.032C17.335,6.031,18,6.696,18,7.516L18,7.516z M18,13.516C18,14.335,17.335,15,16.516,15H1.484 C0.665,15,0,14.335,0,13.516l0,0c0-0.82,0.665-1.483,1.484-1.483h15.032C17.335,12.031,18,12.695,18,13.516L18,13.516z"/>
            </svg>
          </span>
        </label>

        <div class="trigger"><a class="page-link" href="/narsil.github.io/about/">About Me</a><a class="page-link" href="/narsil.github.io/search/">Search</a><a class="page-link" href="/narsil.github.io/categories/">Tags</a></div>
      </nav></div>
</header>
<main class="page-content" aria-label="Content">
      <div class="wrapper">
        <article class="post h-entry" itemscope itemtype="http://schema.org/BlogPosting">

  <header class="post-header">
    <h1 class="post-title p-name" itemprop="name headline">Model based encodings</h1><p class="page-description">How to use BPE without this hardcoded algorithm</p><p class="post-meta post-meta-title"><time class="dt-published" datetime="2019-05-16T00:00:00+02:00" itemprop="datePublished">
        May 16, 2019
      </time><span itemprop="author" itemscope itemtype="http://schema.org/Person">
            <span class="p-author h-card" itemprop="name">nicolas</span></span><span class="read-time" title="Estimated read time">
    
    
      11 min read
    
</span></p>

    
      <p class="category-tags"><i class="fas fa-tags category-tags-icon"></i></i> 
      
        <a class="category-tags-link" href="/narsil.github.io/categories/#ml">ml</a>
        &nbsp;
      
        <a class="category-tags-link" href="/narsil.github.io/categories/#nlp">nlp</a>
        
      
      </p>
    

    </header>

  <div class="post-content e-content" itemprop="articleBody">
    <ul class="section-nav">
<li class="toc-entry toc-h1"><a href="#tldr-in-this-article-we-present-an-idea-to-generate-byte-pair-encodings-not-based-on-frequency-in-the-dataset-but-on-the-quality-of-the-prediction-of-our-model-this-enables-us-to-predict-multi-word-tokens-like-new-york-and-address-languages-that-dont-use-spaces-to-split-words">TL;DR In this article we present an idea to generate Byte pair encodings, not based on frequency in the dataset, but on the quality of the prediction of our model. This enables us to predict multi word tokens like “New York” and address languages that don’t use spaces to split words.</a>
<ul>
<li class="toc-entry toc-h2"><a href="#what-are-byte-pair-encodings-">What are Byte Pair Encodings ?</a></li>
<li class="toc-entry toc-h2"><a href="#whats-the-problem-with-bpe-">What’s the problem with BPE ?</a></li>
<li class="toc-entry toc-h2"><a href="#ε-bpe-or-model-based-bpe-encoding">ε-BPE or model based BPE encoding</a></li>
<li class="toc-entry toc-h2"><a href="#results">Results</a></li>
<li class="toc-entry toc-h2"><a href="#future-work">Future Work</a></li>
</ul>
</li>
</ul><p><a href="https://en.wikipedia.org/wiki/Byte_pair_encoding">Byte-pair encodings</a> (BPE) are now very commonly used in NLP. In <a href="https://openai.com/blog/better-language-models/">GPT-2</a>, Byte-pair encodings are used to preformat the raw texts before feeding the model. But this is a relatively costly step for your preprocessing and has some limitations. For instance, you have to split your data on spaces if you want your byte pair algorithm to compute in reasonable time.</p>

<blockquote>
  <h1 id="tldr-in-this-article-we-present-an-idea-to-generate-byte-pair-encodings-not-based-on-frequency-in-the-dataset-but-on-the-quality-of-the-prediction-of-our-model-this-enables-us-to-predict-multi-word-tokens-like-new-york-and-address-languages-that-dont-use-spaces-to-split-words">
<a class="anchor" href="#tldr-in-this-article-we-present-an-idea-to-generate-byte-pair-encodings-not-based-on-frequency-in-the-dataset-but-on-the-quality-of-the-prediction-of-our-model-this-enables-us-to-predict-multi-word-tokens-like-new-york-and-address-languages-that-dont-use-spaces-to-split-words" aria-hidden="true"><span class="octicon octicon-link"></span></a>TL;DR In this article we present an idea to generate Byte pair encodings, not based on frequency in the dataset, but on the quality of the prediction of our model. This enables us to predict multi word tokens like “New York” and address languages that don’t use spaces to split words.</h1>
</blockquote>

<h2 id="what-are-byte-pair-encodings-">
<a class="anchor" href="#what-are-byte-pair-encodings-" aria-hidden="true"><span class="octicon octicon-link"></span></a>What are Byte Pair Encodings ?</h2>

<p>Byte-pair encodings are a way to compress information from pairs of bytes that will form tokens. Let’s take an example :</p>

<p>“I love carrots and I love apples.”</p>

<p>This sentence read by a computer is only a sequence of bytes (bytes are simply a number between 0 and 255). That means to a computer our sentence looks like</p>

<p>“I love carrots and I love apples.” -&gt; [73, 32, 108, 111, 118, 101, 32, 99, 97, 114, 114, 111, 116, 115, 32, 97, 110, 100, 32, 73, 32, 108, 111, 118, 101, 32, 97, 112, 112, 108, 101, 115, 46]</p>

<p>From that example, you may remark that some bytes are occurring multiple times together like [108, 111] that occurs twice (it’s “lo” from “love”). So let’s build a new token for this frequent pair. Numbers from 0 to 255 are already taken so we’ll take the next available number which is 256, and we are going to store that information in a table</p>

<p>[108, 111] -&gt; 256</p>

<p>Now if we use that new token to encode our original bytes, whenever we encounter [108, 111], we’ll replace that by 256, so the original byte string becomes :</p>

<p>[73, 32, 108, <strong>256</strong>, 101, 32, 99, 97, 114, 114, 111, 116, 115, 32, 97, 110, 100, 32, 73, 32, <strong>256</strong>, 118, 101, 32, 97, 112, 112, 108, 101, 115, 46]</p>

<p>We went from 33 numbers to 31 numbers. We can rinse and repeat to compress the number of numbers even further. Originally, BPE was proposed as a compression algorithm. It’s not the best compression tool, so we won’t look at that side of the algorithm. Now you get what we are looking at when we train a model on BPEs, just a list of numbers.</p>

<p>Typically a BPE vocabulary contains ~10k tokens (GPT-2 has 50k), that means it can capture very frequent words like “the” entirely, and parts of words that contain many variations like “ment” (<strong>ment</strong>ally, environ<strong>ment</strong> …). What’s great about it it that you can now have words share semantic parts of them for their representation in your model so (environ-ment, environ-ment-al, environ-ment-ally will all share “environ” which will contain most of the semantic meaning, the rest will contain grammar information hopefully).</p>

<p>The real advantage of BPE over classical Word Embeddings is that it does not fall into the out-of-vocabulary error (when a word was not seen). At worse you can always fall back to single bytes.</p>

<h2 id="whats-the-problem-with-bpe-">
<a class="anchor" href="#whats-the-problem-with-bpe-" aria-hidden="true"><span class="octicon octicon-link"></span></a><strong>What’s the problem with BPE ?</strong>
</h2>

<p>BPE algorithm is pretty bad in terms of complexity to calculate (roughly O(n²), you can look at a very good implementation <a href="https://github.com/glample/fastBPE">https://github.com/glample/fastBPE</a>). BPE is also pretty bad when you want to encode some new text. A greedy algorithm will be O(n) but not the best encoding possible, the best encoding possible is actually O(n²) in the general case.</p>

<p>To be honest, most implementations split on spaces as mentioned earlier which speeds up the algorithm quite a bit. Once we have encoded a full word like “the” there is no way to add tokens to it, so it’s not necessary to look at it anymore for potential byte pairs, so we can assume the encoding&amp;table creation go from O(n²) to something much closer to O(n). In addition, at encoding time, once we know the encoding for “the” we can cache that information leading to further speed ups. But using spaces as a special character has drawbacks, namely:</p>

<ul>
  <li>
    <p>We can’t address as well languages that don’t use a space to separate words like Chinese (arguably German).</p>
  </li>
  <li>
    <p>We can’t encode frequently occurring multi words like “New York” or “European Union” or “black holes”</p>
  </li>
</ul>

<p>The second problem is especially bad when you consider examples where semantic is very different from the composing words like “Chicago Bulls” have nothing to do with bulls.</p>

<h2 id="ε-bpe-or-model-based-bpe-encoding">
<a class="anchor" href="#%CE%B5-bpe-or-model-based-bpe-encoding" aria-hidden="true"><span class="octicon octicon-link"></span></a><strong>ε-BPE or model based BPE encoding</strong>
</h2>

<p>The core idea is that instead of using frequency in the dataset to create the byte pairs, we can use the probability transition of the model to create the BPE. Let’s use some kind of transformer, GPT-2 for instance. The core idea of that model, is to predict the next token (in the BPE sense) given a fixed context size. But we can use the output probability of the model in order to create new tokens, not because they are frequent but because they are easy to predict. For instance in a book that contains a character “Sir Francis” that appears rarely, but there is only one character named “Sir …”, the algorithm might learn quite easily that “Sir “ is followed by “Francis” with great confidence, even if the occurence of the words is pretty low compared to common words like “the”, “like” and “I”.</p>

<p>So the core algorithm, will train a simple transformer on a dataset on regular bytes (at least at the start). Then, as the algorithm learns, some predictions will be above 1-ε. We can keep track of those and keep track of the last token we received, to check if we were correct.</p>

<p>Let’s keep a hit map to see how successful our algorithm is. For instance, I predicted “Fo” will be followed by “gg” (Phileas Fogg is a character in Around the world in 80 days) with probability &gt; 1-ε. I was correct in 14 cases, and got it wrong in 1 case (let’s say it was classical “Fo” “g “). We were correct 14/15 times that’s 93% accuracy. If we look at the fluctuation interval associated with that, we get [92.74-93.25%] range. If 92.74 &gt; 1–ε we can conclude that our transition prediction is really very good, it’s not a fluke of the model.</p>

<p>More generally, if we want 95% confidence when we upgrade this transition, we need to respect the following inequality : k / n - 1/sqrt(n) &gt; 1-ε, where k is the number of successful predictions, n is the total number of predictions and ε the probability margin explained earlier.</p>

<p>This model is slightly different from byte pair encoding, but now we don’t suffer from the 2 problems mentioned above, we can get pretty long tokens if the dataset allows for it, and we can use Chinese or German as the space character does not play any special role.</p>

<h2 id="results">
<a class="anchor" href="#results" aria-hidden="true"><span class="octicon octicon-link"></span></a><strong>Results</strong>
</h2>

<p>Implementation can be found here. On the first run, we ran on a book <a href="https://en.wikipedia.org/wiki/Around_the_World_in_Eighty_Days">Around the world in 80 days</a> by Jules Verne. It’s a very small dataset but the idea is to check that we can actually overcome BPE’s limitations. Here are a few telling tokens that were created while running on the dataset :</p>

<table>
  <thead>
    <tr>
      <th>Promotion #</th>
      <th>Token created</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>338</td>
      <td>“Mr. Fogg”</td>
    </tr>
    <tr>
      <td>357</td>
      <td>“Phileas Fogg”</td>
    </tr>
    <tr>
      <td>360</td>
      <td>“Passepartout”</td>
    </tr>
    <tr>
      <td>635</td>
      <td>“ir Franc” (Sir Francis)</td>
    </tr>
    <tr>
      <td>781</td>
      <td>“It was”</td>
    </tr>
    <tr>
      <td>900</td>
      <td>’” asked’ (contains a quote character)</td>
    </tr>
  </tbody>
</table>

<p>What is interesting, it that:</p>

<ul>
  <li>
    <p>We managed to create multi word tokens like “Phileas Fogg”</p>
  </li>
  <li>
    <p>Multi word tokens are a minority in terms of tokens created by the algorithm. Out of 421 tokens that contain a space character only 27 are multi word tokens like “New York”. The remaining 394 tokens contain an ending space, meaning our algorithm is learning word boundaries. It is reassuring because traditional BPE are usually hardcoding that information.</p>
  </li>
  <li>
    <p>Multi word tokens are name of characters in the book, which are occurring frequently, they are an entity by themselves (Fogg even has 2 tokens associated to him)</p>
  </li>
  <li>
    <p>2 Multi word tokens are <strong>not</strong> specific to the book, “it was” is a pretty common 2 word token in English in descriptions, “(…) asked” is a very common continuation when we start a quote and end a sentence with a question mark. We can guess that “(…) said” would be a token further down the line, but it’s harder as there are probably a wider variety of verbs that can fit (said, replied, answered and so on…)</p>
  </li>
</ul>

<p>Here is a more complete comparison of standard BPE with ε-BPE, with the first 100 tokens generated, as you can see more tokens are dedicated to syntax in eBPE, which Standard BPE ignore gladly by splitting on newlines and spaces.</p>

<table>
  <thead>
    <tr>
      <th>Standard BPE</th>
      <th>eBPE</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td>‘th’</td>
      <td>‘\r\n’</td>
    </tr>
    <tr>
      <td>‘the ‘</td>
      <td>’, ‘</td>
    </tr>
    <tr>
      <td>‘an’</td>
      <td>‘d ‘</td>
    </tr>
    <tr>
      <td>‘in’</td>
      <td>‘Th’</td>
    </tr>
    <tr>
      <td>‘ou’</td>
      <td>‘ve’</td>
    </tr>
    <tr>
      <td>‘er’</td>
      <td>‘y ‘</td>
    </tr>
    <tr>
      <td>‘ed ‘</td>
      <td>’; ‘</td>
    </tr>
    <tr>
      <td>‘ar’</td>
      <td>‘f ‘</td>
    </tr>
    <tr>
      <td>‘hi’</td>
      <td>’,\r\n’</td>
    </tr>
    <tr>
      <td>‘on’</td>
      <td>‘\r\n\r\n’</td>
    </tr>
    <tr>
      <td>‘re’</td>
      <td>‘th’</td>
    </tr>
    <tr>
      <td>‘en’</td>
      <td>‘qu’</td>
    </tr>
    <tr>
      <td>‘and ‘</td>
      <td>‘the’</td>
    </tr>
    <tr>
      <td>‘of ‘</td>
      <td>’ ‘</td>
    </tr>
    <tr>
      <td>‘st’</td>
      <td>‘the ‘</td>
    </tr>
    <tr>
      <td>‘to ‘</td>
      <td>‘The’</td>
    </tr>
    <tr>
      <td>‘as ‘</td>
      <td>‘\r\n’</td>
    </tr>
    <tr>
      <td>‘se’</td>
      <td>’, ‘</td>
    </tr>
    <tr>
      <td>‘ha’</td>
      <td>‘y ‘</td>
    </tr>
    <tr>
      <td>‘or’</td>
      <td>‘d ‘</td>
    </tr>
    <tr>
      <td>’.\r ‘</td>
      <td>‘Th’</td>
    </tr>
    <tr>
      <td>‘it’</td>
      <td>‘ve’</td>
    </tr>
    <tr>
      <td>‘he ‘</td>
      <td>’; ‘</td>
    </tr>
    <tr>
      <td>‘le’</td>
      <td>‘f ‘</td>
    </tr>
    <tr>
      <td>‘ing ‘</td>
      <td>’,\r\n’</td>
    </tr>
    <tr>
      <td>’,\r ‘</td>
      <td>’ ‘</td>
    </tr>
    <tr>
      <td>‘as’</td>
      <td>‘\r\n’</td>
    </tr>
    <tr>
      <td>‘in ‘</td>
      <td>’, ‘</td>
    </tr>
    <tr>
      <td>‘at’</td>
      <td>‘d ‘</td>
    </tr>
    <tr>
      <td>‘at ‘</td>
      <td>‘y ‘</td>
    </tr>
    <tr>
      <td>‘ro’</td>
      <td>‘Th’</td>
    </tr>
    <tr>
      <td>‘er ‘</td>
      <td>‘ve’</td>
    </tr>
    <tr>
      <td>‘al’</td>
      <td>‘f ‘</td>
    </tr>
    <tr>
      <td>‘es’</td>
      <td>’; ‘</td>
    </tr>
    <tr>
      <td>‘on ‘</td>
      <td>’ ‘</td>
    </tr>
    <tr>
      <td>‘was ‘</td>
      <td>’,\r\n’</td>
    </tr>
    <tr>
      <td>‘no’</td>
      <td>‘th’</td>
    </tr>
    <tr>
      <td>‘his ‘</td>
      <td>‘\r\n’</td>
    </tr>
    <tr>
      <td>‘ed’</td>
      <td>’, ‘</td>
    </tr>
    <tr>
      <td>‘ac’</td>
      <td>‘d ‘</td>
    </tr>
    <tr>
      <td>’“\r ‘</td>
      <td>‘y ‘</td>
    </tr>
    <tr>
      <td>‘ri’</td>
      <td>‘Th’</td>
    </tr>
    <tr>
      <td>‘be’</td>
      <td>‘ve’</td>
    </tr>
    <tr>
      <td>‘ly ‘</td>
      <td>‘f ‘</td>
    </tr>
    <tr>
      <td>‘om’</td>
      <td>’; ‘</td>
    </tr>
    <tr>
      <td>‘li’</td>
      <td>’ ‘</td>
    </tr>
    <tr>
      <td>‘en ‘</td>
      <td>’,\r\n’</td>
    </tr>
    <tr>
      <td>‘ti’</td>
      <td>‘th’</td>
    </tr>
    <tr>
      <td>‘og’</td>
      <td>‘\r\n\r\n’</td>
    </tr>
    <tr>
      <td>‘ra’</td>
      <td>‘the’</td>
    </tr>
    <tr>
      <td>‘di’</td>
      <td>‘the ‘</td>
    </tr>
    <tr>
      <td>‘art’</td>
      <td>‘The’</td>
    </tr>
    <tr>
      <td>‘Fog’</td>
      <td>‘qu’</td>
    </tr>
    <tr>
      <td>‘the’</td>
      <td>’s ‘</td>
    </tr>
    <tr>
      <td>‘ma’</td>
      <td>‘The ‘</td>
    </tr>
    <tr>
      <td>‘ve ‘</td>
      <td>‘g ‘</td>
    </tr>
    <tr>
      <td>‘is ‘</td>
      <td>’,”’</td>
    </tr>
    <tr>
      <td>‘or ‘</td>
      <td>‘no’</td>
    </tr>
    <tr>
      <td>‘ld ‘</td>
      <td>‘t ‘</td>
    </tr>
    <tr>
      <td>‘whi’</td>
      <td>‘th ‘</td>
    </tr>
    <tr>
      <td>‘il’</td>
      <td>‘o ‘</td>
    </tr>
    <tr>
      <td>‘ur’</td>
      <td>’?”’</td>
    </tr>
    <tr>
      <td>’s, ‘</td>
      <td>‘\r\n\r\n”’</td>
    </tr>
    <tr>
      <td>‘de’</td>
      <td>’,” ‘</td>
    </tr>
    <tr>
      <td>‘wh’</td>
      <td>‘Mr’</td>
    </tr>
    <tr>
      <td>‘lo’</td>
      <td>‘e ‘</td>
    </tr>
    <tr>
      <td>‘ch ‘</td>
      <td>‘yo’</td>
    </tr>
    <tr>
      <td>‘ere ‘</td>
      <td>‘Yo’</td>
    </tr>
    <tr>
      <td>‘ith ‘</td>
      <td>‘ou’</td>
    </tr>
    <tr>
      <td>‘The ‘</td>
      <td>’. ‘</td>
    </tr>
    <tr>
      <td>‘am’</td>
      <td>‘nd ‘</td>
    </tr>
    <tr>
      <td>‘ent’</td>
      <td>‘h ‘</td>
    </tr>
    <tr>
      <td>‘un’</td>
      <td>‘n ‘</td>
    </tr>
    <tr>
      <td>‘gh’</td>
      <td>’;\r\n’</td>
    </tr>
    <tr>
      <td>‘with ‘</td>
      <td>‘og’</td>
    </tr>
    <tr>
      <td>‘an ‘</td>
      <td>‘you’</td>
    </tr>
    <tr>
      <td>‘oun’</td>
      <td>‘r ‘</td>
    </tr>
    <tr>
      <td>‘part’</td>
      <td>‘of ‘</td>
    </tr>
    <tr>
      <td>‘ver’</td>
      <td>‘to ‘</td>
    </tr>
    <tr>
      <td>‘si’</td>
      <td>’s F’</td>
    </tr>
    <tr>
      <td>‘had ‘</td>
      <td>‘Pa’</td>
    </tr>
    <tr>
      <td>‘not ‘</td>
      <td>‘as ‘</td>
    </tr>
    <tr>
      <td>‘ould ‘</td>
      <td>'’s ‘</td>
    </tr>
    <tr>
      <td>‘ing’</td>
      <td>’. F’</td>
    </tr>
    <tr>
      <td>‘out ‘</td>
      <td>‘is ‘</td>
    </tr>
    <tr>
      <td>‘el’</td>
      <td>‘ld ‘</td>
    </tr>
    <tr>
      <td>‘sa’</td>
      <td>‘ng ‘</td>
    </tr>
    <tr>
      <td>‘ce’</td>
      <td>‘at ‘</td>
    </tr>
    <tr>
      <td>‘that ‘</td>
      <td>‘re’</td>
    </tr>
    <tr>
      <td>‘asse’</td>
      <td>‘ve ‘</td>
    </tr>
    <tr>
      <td>‘fi’</td>
      <td>‘gh’</td>
    </tr>
    <tr>
      <td>‘ol’</td>
      <td>‘ut ‘</td>
    </tr>
    <tr>
      <td>‘sh’</td>
      <td>‘ll’</td>
    </tr>
    <tr>
      <td>‘r. ‘</td>
      <td>‘Pas’</td>
    </tr>
    <tr>
      <td>’.”\r ‘</td>
      <td>‘re ‘</td>
    </tr>
    <tr>
      <td>‘Passe’</td>
      <td>‘ed ‘</td>
    </tr>
    <tr>
      <td>‘Passepart’</td>
      <td>’. Fog’</td>
    </tr>
    <tr>
      <td>‘ut ‘</td>
      <td>‘ch ‘</td>
    </tr>
    <tr>
      <td>‘which ‘</td>
      <td>‘and ‘</td>
    </tr>
    <tr>
      <td>‘ay’</td>
      <td>‘ea’</td>
    </tr>
  </tbody>
</table>

<p>I would love to check the tokenization of German or Chinese but I’m not a speaker of either language so it’s hard for me to analyze the results anyway. What’s for sure is that the technique is applicable.</p>

<p>I also tried the technique on different types of files like wav files or mp3 files, even jpeg images. Analysis is harder to do. Still some interesting notes, it took longer for the model to emit new tokens on the mp3 files than on the wav files. The mp3 file is encoded, therefore should have a lower entropy (meaning it’s harder to predict the next token) than the wav files so the model takes longer to actually get good at predicting. It’s probable (I haven’t checked) that we have to overfit the mp3 file and jpeg files before we can predict any meaningful content (except maybe the header part)</p>

<h2 id="future-work">
<a class="anchor" href="#future-work" aria-hidden="true"><span class="octicon octicon-link"></span></a><strong>Future Work</strong>
</h2>

<p>Many interesting ideas are still left to explore to continue exploring the idea of models creating their own tokenization. For now a limiting factor is the actual BPE encoding process that takes longer and longer as the model creates new tokens. That’s because the encoding process is done in Python, so it’s quite slow and can’t be precalculated as you would do with fixed BPE encodings. To give a sense of the slowdown, the training loop starts at ~11it/s on a GTX970 and finished at roughly 10s/it. That’s a 100x slowdown over the course of the training, with only 1k tokens in the end, far from the 50k used by GPT-2 for instance.</p>

<p>It’s going to be an actual requirement to train on larger and more representative datasets. Training on bigger datasets would help us understand how important are those multi word tokens and maybe what are those multi words. The token “(…) <strong>asked</strong>” was pretty surprising to me, I’m eager to see what else can be discovered.</p>

<p>The actual epsilon used was 40% which actually quite a big (value was chosen with trial and error, to get a small but not null rejection rate of new tokens, to add tokens as fast as possible but not making too many mistakes). That value probably has a sweet spot depending on the number of current tokens, after speeding up the process it would be interesting to look at the best value for epsilon as a function of the number of tokens.</p>

  </div><a class="u-url" href="/narsil.github.io/ml/nlp/2019/05/16/model-based-bpe-encodings.html" hidden></a>
</article>
      </div>
    </main><footer class="site-footer h-card">
  <data class="u-url" href="/narsil.github.io/"></data>

  <div class="wrapper">

    <h2 class="footer-heading">Narsil</h2>

    <div class="footer-col-wrapper">
      <div class="footer-col footer-col-1">
        <ul class="contact-list">
          <li class="p-name">Narsil</li></ul>
      </div>

      <div class="footer-col footer-col-2"><ul class="social-media-list">
  <li><a href="https://github.com/Narsil"><svg class="social svg-icon"><use xlink:href="/narsil.github.io/assets/minima-social-icons.svg#github"></use></svg> <span class="username">Narsil</span></a></li><li><a href="https://www.twitter.com/narsilou"><svg class="social svg-icon"><use xlink:href="/narsil.github.io/assets/minima-social-icons.svg#twitter"></use></svg> <span class="username">narsilou</span></a></li></ul>
</div>

      <div class="footer-col footer-col-3">
        <p>Small experiements insights from ML and software development.</p>
      </div>
    </div>

  </div>

</footer>
</body>

</html>