Spaces:
Runtime error
Runtime error
File size: 13,623 Bytes
d62e696 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
import cv2
import numpy as np
import os
import shutil
import subprocess
import glob
from tqdm.auto import tqdm
import uuid
import re
from zipfile import ZipFile
gpu = False
os.makedirs("./results",exist_ok=True)
def apply_green_screen(image_path, save_path,foreground_segmenter):
"""
Replaces the background of the input image with green using a segmentation model.
Args:
image_path (str): Path to the input image.
segmenter (SoftForegroundSegmenter): Initialized segmentation model.
save_path (str, optional): If provided, saves the result to this path.
Returns:
np.ndarray: The green screen composited image.
"""
# Load image with alpha if available
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image is None:
raise FileNotFoundError(f"Image not found: {image_path}")
# Remove transparency if present
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
# Convert to RGB for the model
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# Get segmentation mask
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
# Normalize and convert mask to 0-255 uint8
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
if mask.ndim == 2:
mask_gray = mask
elif mask.shape[2] == 1:
mask_gray = mask[:, :, 0]
else:
mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, binary_mask = cv2.threshold(mask_gray, 128, 255, cv2.THRESH_BINARY)
# Create green background
green_bg = np.full_like(image_rgb, (0, 255, 0), dtype=np.uint8)
# Create 3-channel mask
mask_3ch = cv2.cvtColor(binary_mask, cv2.COLOR_GRAY2BGR)
# Composite: foreground from image, background as green
output_rgb = np.where(mask_3ch == 255, image_rgb, green_bg)
# Convert back to BGR for OpenCV
output_bgr = cv2.cvtColor(output_rgb, cv2.COLOR_RGB2BGR)
# Save if path is given
if save_path:
cv2.imwrite(save_path, output_bgr)
return output_bgr
def create_transparent_foreground(image_path,foreground_segmenter):
uid = uuid.uuid4().hex[:8].upper()
base_name = os.path.splitext(os.path.basename(image_path))[0]
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
base_name = base_name.strip().replace(" ", "_").replace("__","_")
save_path = f"./results/{base_name}_{uid}.png"
save_path = os.path.abspath(save_path)
image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
if image is None:
raise FileNotFoundError(f"Image not found: {image_path}")
if image.shape[2] == 4:
image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)
if mask.max() <= 1.0:
mask = (mask * 255).astype(np.uint8)
else:
mask = mask.astype(np.uint8)
if mask.ndim == 3 and mask.shape[2] == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
_, alpha = cv2.threshold(mask, 128, 255, cv2.THRESH_BINARY)
rgba_image = np.dstack((image_rgb, alpha))
cv2.imwrite(save_path, cv2.cvtColor(rgba_image, cv2.COLOR_RGBA2BGRA))
return image_rgb, rgba_image, save_path
def remove_background_batch_images(img_list, foreground_segmenter):
# Create unique temp directory
uid = uuid.uuid4().hex[:8].upper()
temp_dir = os.path.abspath(f"./results/bg_removed_{uid}")
os.makedirs(temp_dir, exist_ok=True)
# Process each image
for image_path in tqdm(img_list, desc="Removing Backgrounds"):
_, _, save_path = create_transparent_foreground(image_path, foreground_segmenter)
shutil.move(save_path, os.path.join(temp_dir, os.path.basename(save_path)))
# Create zip file
zip_path = f"{temp_dir}.zip"
with ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(temp_dir):
for file in files:
file_path = os.path.join(root, file)
arcname = os.path.relpath(file_path, start=temp_dir)
zipf.write(file_path, arcname=arcname)
# shutil.rmtree(temp_dir)
return os.path.abspath(zip_path)
def get_sorted_paths(directory, extension="png"):
"""
Returns full paths of all images with the given extension, sorted by filename (without extension).
"""
extension = extension.lstrip(".").lower()
pattern = os.path.join(directory, f"*.{extension}")
files = glob.glob(pattern)
files.sort(key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
return files
def extract_all_frames_ffmpeg_gpu(video_path, output_dir="frames", extension="png", use_gpu=True):
"""
Extracts all frames from a video using ffmpeg, with optional GPU acceleration.
Returns a sorted list of full paths to the extracted frames.
"""
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
extension = extension.lstrip(".")
output_pattern = os.path.join(output_dir, f"%05d.{extension}")
command = [
"ffmpeg", "-i", video_path, output_pattern
]
if use_gpu:
command.insert(1, "cuda")
command.insert(1, "-hwaccel")
print("Running command:", " ".join(command))
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
return get_sorted_paths(output_dir, extension)
def green_screen_batch(frames, foreground_segmenter,output_dir="green_screen_frames"):
"""
Applies green screen background to a batch of frames and saves the results.
Args:
frames (List[str]): List of image paths.
output_dir (str): Directory to save green-screened output.
"""
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.makedirs(output_dir, exist_ok=True)
green_screen_frames=[]
for frame in tqdm(frames, desc="Processing green screen frames"):
save_image_path=os.path.join(output_dir, os.path.basename(frame))
result = apply_green_screen(
frame,
save_image_path,
foreground_segmenter
)
green_screen_frames.append(save_image_path)
return green_screen_frames
def green_screen_video_maker(original_video, green_screen_frames, batch_size=100):
"""
Creates video chunks from green screen frames based on original video's properties.
Args:
original_video (str): Path to the original video file (to read FPS, size).
green_screen_frames (List[str]): List of green screen frame paths.
batch_size (int): Number of frames per chunked video.
"""
temp_folder = "temp_video"
if os.path.exists(temp_folder):
shutil.rmtree(temp_folder)
os.makedirs(temp_folder, exist_ok=True)
# Get video info from original video
cap = cv2.VideoCapture(original_video)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
total_frames = len(green_screen_frames)
num_chunks = (total_frames + batch_size - 1) // batch_size # Ceiling division
for chunk_idx in tqdm(range(num_chunks), desc="Processing video chunks"):
chunk_path = os.path.join(temp_folder, f"{chunk_idx+1}.mp4")
out = cv2.VideoWriter(chunk_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))
start_idx = chunk_idx * batch_size
end_idx = min(start_idx + batch_size, total_frames)
for frame_path in green_screen_frames[start_idx:end_idx]:
frame = cv2.imread(frame_path)
frame = cv2.resize(frame, (width, height)) # Ensure matching resolution
out.write(frame)
out.release()
def merge_video_chunks(output_path="final_video.mp4", temp_folder="temp_video", use_gpu=True):
"""
Merges all video chunks from temp_folder into a final single video.
"""
os.makedirs("./results", exist_ok=True)
output_path = f"../results/{output_path}" # relative to temp_folder
file_list_path = os.path.join(temp_folder, "chunks.txt")
chunk_files=sorted(
[f for f in os.listdir(temp_folder) if f.lower().endswith("mp4")],
key=lambda x: int(os.path.splitext(x)[0])
)
with open(file_list_path, "w") as f:
for chunk in chunk_files:
f.write(f"file '{chunk}'\n") # β
No './' prefix
ffmpeg_cmd = ["ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", "chunks.txt"]
if use_gpu:
ffmpeg_cmd += ["-c:v", "h264_nvenc", "-preset", "fast"]
else:
ffmpeg_cmd += ["-c", "copy"]
ffmpeg_cmd.append(output_path)
# β
Run from inside temp_folder, so chunks.txt and mp4 files are local
subprocess.run(ffmpeg_cmd, cwd=temp_folder, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def extract_audio_from_video(video_path, output_audio_path="output_audio.wav", format="wav", sample_rate=16000, channels=1):
"""
Extracts audio from a video file using ffmpeg.
Args:
video_path (str): Path to the input video file.
output_audio_path (str): Path to save the extracted audio (e.g., .wav or .mp3).
format (str): 'wav' or 'mp3'
sample_rate (int): Sampling rate in Hz (e.g., 16000 for ASR models)
channels (int): Number of audio channels (1=mono, 2=stereo)
"""
# Ensure the output directory exists
os.makedirs(os.path.dirname(output_audio_path) or ".", exist_ok=True)
# Build ffmpeg command
if format.lower() == "wav":
command = [
"ffmpeg", "-y", # Overwrite output
"-i", video_path, # Input video
"-vn", # Disable video
"-ac", str(channels), # Audio channels (1 = mono)
"-ar", str(sample_rate), # Audio sample rate
"-acodec", "pcm_s16le", # WAV codec
output_audio_path
]
elif format.lower() == "mp3":
command = [
"ffmpeg", "-y",
"-i", video_path,
"-vn",
"-ac", str(channels),
"-ar", str(sample_rate),
"-acodec", "libmp3lame", # MP3 codec
output_audio_path
]
else:
raise ValueError("Unsupported format. Use 'wav' or 'mp3'.")
# Run command silently
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def add_audio(video_path, audio_path, output_path, use_gpu=False):
"""
Replaces the audio of a video with a new audio track.
Args:
video_path (str): Path to the video file.
audio_path (str): Path to the audio file.
output_path (str): Path where the final video will be saved.
use_gpu (bool): If True, use GPU-accelerated video encoding.
"""
os.makedirs(os.path.dirname(output_path), exist_ok=True)
command = [
"ffmpeg", "-y", # Overwrite without asking
"-i", video_path, # Input video
"-i", audio_path, # Input audio
"-map", "0:v:0", # Use video from first input
"-map", "1:a:0", # Use audio from second input
"-shortest" # Trim to the shortest stream (audio/video)
]
if use_gpu:
command += ["-c:v", "h264_nvenc", "-preset", "fast"]
else:
command += ["-c:v", "copy"]
command += ["-c:a", "aac", "-b:a", "192k", output_path]
subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
def remove_background_from_video(uploaded_video_path,foreground_segmenter):
# π Generate a single UUID to use for all related files
uid = uuid.uuid4().hex[:8].upper()
# Define all output paths using that UUID
base_name = os.path.splitext(os.path.basename(uploaded_video_path))[0]
base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
base_name = base_name.strip().replace(" ", "_")
temp_video_path = f"./results/{base_name}_chunks_{uid}.mp4"
audio_path = f"./results/{base_name}_audio_{uid}.wav"
final_output_path = f"./results/{base_name}_final_{uid}.mp4"
# Step 1: Extract frames
frames = extract_all_frames_ffmpeg_gpu(
video_path=uploaded_video_path,
output_dir="frames",
extension="png",
use_gpu=gpu
)
# Step 2: Remove background (green screen)
green_screen_frames = green_screen_batch(frames,foreground_segmenter)
# Step 3: Rebuild video from frames
green_screen_video_maker(uploaded_video_path, green_screen_frames, batch_size=100)
# Step 4: Merge video chunks
merge_video_chunks(output_path=os.path.basename(temp_video_path), use_gpu=gpu)
# Step 5: Extract original audio
extract_audio_from_video(uploaded_video_path, output_audio_path=audio_path)
# Step 6: Add audio back
add_audio(
video_path=temp_video_path,
audio_path=audio_path,
output_path=final_output_path,
use_gpu=True
)
return os.path.abspath(final_output_path)
|