File size: 13,623 Bytes
d62e696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import cv2
import numpy as np
import os
import shutil
import subprocess
import glob
from tqdm.auto import tqdm
import uuid
import re
from zipfile import ZipFile

gpu = False
os.makedirs("./results",exist_ok=True)

def apply_green_screen(image_path, save_path,foreground_segmenter):
    """

    Replaces the background of the input image with green using a segmentation model.



    Args:

        image_path (str): Path to the input image.

        segmenter (SoftForegroundSegmenter): Initialized segmentation model.

        save_path (str, optional): If provided, saves the result to this path.



    Returns:

        np.ndarray: The green screen composited image.

    """

    # Load image with alpha if available
    image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
    if image is None:
        raise FileNotFoundError(f"Image not found: {image_path}")

    # Remove transparency if present
    if image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)

    # Convert to RGB for the model
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

    # Get segmentation mask
    mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)

    # Normalize and convert mask to 0-255 uint8
    if mask.max() <= 1.0:
        mask = (mask * 255).astype(np.uint8)
    else:
        mask = mask.astype(np.uint8)

    if mask.ndim == 2:
        mask_gray = mask
    elif mask.shape[2] == 1:
        mask_gray = mask[:, :, 0]
    else:
        mask_gray = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

    _, binary_mask = cv2.threshold(mask_gray, 128, 255, cv2.THRESH_BINARY)

    # Create green background
    green_bg = np.full_like(image_rgb, (0, 255, 0), dtype=np.uint8)

    # Create 3-channel mask
    mask_3ch = cv2.cvtColor(binary_mask, cv2.COLOR_GRAY2BGR)

    # Composite: foreground from image, background as green
    output_rgb = np.where(mask_3ch == 255, image_rgb, green_bg)

    # Convert back to BGR for OpenCV
    output_bgr = cv2.cvtColor(output_rgb, cv2.COLOR_RGB2BGR)

    # Save if path is given
    if save_path:
        cv2.imwrite(save_path, output_bgr)

    return output_bgr


def create_transparent_foreground(image_path,foreground_segmenter):
    uid = uuid.uuid4().hex[:8].upper()
    base_name = os.path.splitext(os.path.basename(image_path))[0]
    base_name = re.sub(r'[^a-zA-Z\s]', '', base_name)
    base_name = base_name.strip().replace(" ", "_").replace("__","_")
    save_path = f"./results/{base_name}_{uid}.png"
    save_path = os.path.abspath(save_path)

    image = cv2.imread(image_path, cv2.IMREAD_UNCHANGED)
    if image is None:
        raise FileNotFoundError(f"Image not found: {image_path}")
    if image.shape[2] == 4:
        image = cv2.cvtColor(image, cv2.COLOR_BGRA2BGR)

    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    mask = foreground_segmenter.estimate_foreground_segmentation(image_rgb)

    if mask.max() <= 1.0:
        mask = (mask * 255).astype(np.uint8)
    else:
        mask = mask.astype(np.uint8)

    if mask.ndim == 3 and mask.shape[2] == 3:
        mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)

    _, alpha = cv2.threshold(mask, 128, 255, cv2.THRESH_BINARY)
    rgba_image = np.dstack((image_rgb, alpha))
    cv2.imwrite(save_path, cv2.cvtColor(rgba_image, cv2.COLOR_RGBA2BGRA))

    return image_rgb, rgba_image, save_path




def remove_background_batch_images(img_list, foreground_segmenter):
    # Create unique temp directory
    uid = uuid.uuid4().hex[:8].upper()
    temp_dir = os.path.abspath(f"./results/bg_removed_{uid}")
    os.makedirs(temp_dir, exist_ok=True)

    # Process each image
    for image_path in tqdm(img_list, desc="Removing Backgrounds"):
        _, _, save_path = create_transparent_foreground(image_path, foreground_segmenter)
        shutil.move(save_path, os.path.join(temp_dir, os.path.basename(save_path)))

    # Create zip file
    zip_path = f"{temp_dir}.zip"
    with ZipFile(zip_path, 'w') as zipf:
        for root, _, files in os.walk(temp_dir):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, start=temp_dir)
                zipf.write(file_path, arcname=arcname)
    # shutil.rmtree(temp_dir)
    return os.path.abspath(zip_path)

def get_sorted_paths(directory, extension="png"):
    """

    Returns full paths of all images with the given extension, sorted by filename (without extension).

    """
    extension = extension.lstrip(".").lower()
    pattern = os.path.join(directory, f"*.{extension}")
    files = glob.glob(pattern)
    files.sort(key=lambda x: int(os.path.splitext(os.path.basename(x))[0]))
    return files


def extract_all_frames_ffmpeg_gpu(video_path, output_dir="frames", extension="png", use_gpu=True):
    """

    Extracts all frames from a video using ffmpeg, with optional GPU acceleration.

    Returns a sorted list of full paths to the extracted frames.

    """
    if os.path.exists(output_dir):
        shutil.rmtree(output_dir)
    os.makedirs(output_dir, exist_ok=True)

    extension = extension.lstrip(".")
    output_pattern = os.path.join(output_dir, f"%05d.{extension}")

    command = [
        "ffmpeg", "-i", video_path, output_pattern
    ]
    if use_gpu:
        command.insert(1, "cuda")
        command.insert(1, "-hwaccel")

    print("Running command:", " ".join(command))
    subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

    return get_sorted_paths(output_dir, extension)



def green_screen_batch(frames, foreground_segmenter,output_dir="green_screen_frames"):
    """

    Applies green screen background to a batch of frames and saves the results.



    Args:

        frames (List[str]): List of image paths.

        output_dir (str): Directory to save green-screened output.

    """
    if os.path.exists(output_dir):
        shutil.rmtree(output_dir)
    os.makedirs(output_dir, exist_ok=True)
    green_screen_frames=[]
    for frame in tqdm(frames, desc="Processing green screen frames"):
        save_image_path=os.path.join(output_dir, os.path.basename(frame))
        result = apply_green_screen(
            frame,
            save_image_path,
            foreground_segmenter
        )
        green_screen_frames.append(save_image_path)
    return green_screen_frames


def green_screen_video_maker(original_video, green_screen_frames, batch_size=100):
    """

    Creates video chunks from green screen frames based on original video's properties.



    Args:

        original_video (str): Path to the original video file (to read FPS, size).

        green_screen_frames (List[str]): List of green screen frame paths.

        batch_size (int): Number of frames per chunked video.

    """
    temp_folder = "temp_video"
    if os.path.exists(temp_folder):
        shutil.rmtree(temp_folder)
    os.makedirs(temp_folder, exist_ok=True)

    # Get video info from original video
    cap = cv2.VideoCapture(original_video)
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    cap.release()

    total_frames = len(green_screen_frames)
    num_chunks = (total_frames + batch_size - 1) // batch_size  # Ceiling division

    for chunk_idx in tqdm(range(num_chunks), desc="Processing video chunks"):
        chunk_path = os.path.join(temp_folder, f"{chunk_idx+1}.mp4")
        out = cv2.VideoWriter(chunk_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (width, height))

        start_idx = chunk_idx * batch_size
        end_idx = min(start_idx + batch_size, total_frames)

        for frame_path in green_screen_frames[start_idx:end_idx]:
            frame = cv2.imread(frame_path)
            frame = cv2.resize(frame, (width, height))  # Ensure matching resolution
            out.write(frame)

        out.release()



def merge_video_chunks(output_path="final_video.mp4", temp_folder="temp_video", use_gpu=True):
    """

    Merges all video chunks from temp_folder into a final single video.

    """
    os.makedirs("./results", exist_ok=True)
    output_path = f"../results/{output_path}"  # relative to temp_folder
    file_list_path = os.path.join(temp_folder, "chunks.txt")
    chunk_files=sorted(
            [f for f in os.listdir(temp_folder) if f.lower().endswith("mp4")],
            key=lambda x: int(os.path.splitext(x)[0])
        )

    with open(file_list_path, "w") as f:
        for chunk in chunk_files:
            f.write(f"file '{chunk}'\n")  # βœ… No './' prefix

    ffmpeg_cmd = ["ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", "chunks.txt"]

    if use_gpu:
        ffmpeg_cmd += ["-c:v", "h264_nvenc", "-preset", "fast"]
    else:
        ffmpeg_cmd += ["-c", "copy"]

    ffmpeg_cmd.append(output_path)

    # βœ… Run from inside temp_folder, so chunks.txt and mp4 files are local
    subprocess.run(ffmpeg_cmd, cwd=temp_folder, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)


def extract_audio_from_video(video_path, output_audio_path="output_audio.wav", format="wav", sample_rate=16000, channels=1):
    """

    Extracts audio from a video file using ffmpeg.



    Args:

        video_path (str): Path to the input video file.

        output_audio_path (str): Path to save the extracted audio (e.g., .wav or .mp3).

        format (str): 'wav' or 'mp3'

        sample_rate (int): Sampling rate in Hz (e.g., 16000 for ASR models)

        channels (int): Number of audio channels (1=mono, 2=stereo)

    """
    # Ensure the output directory exists
    os.makedirs(os.path.dirname(output_audio_path) or ".", exist_ok=True)

    # Build ffmpeg command
    if format.lower() == "wav":
        command = [
            "ffmpeg", "-y",               # Overwrite output
            "-i", video_path,            # Input video
            "-vn",                       # Disable video
            "-ac", str(channels),        # Audio channels (1 = mono)
            "-ar", str(sample_rate),     # Audio sample rate
            "-acodec", "pcm_s16le",      # WAV codec
            output_audio_path
        ]
    elif format.lower() == "mp3":
        command = [
            "ffmpeg", "-y",
            "-i", video_path,
            "-vn",
            "-ac", str(channels),
            "-ar", str(sample_rate),
            "-acodec", "libmp3lame",     # MP3 codec
            output_audio_path
        ]
    else:
        raise ValueError("Unsupported format. Use 'wav' or 'mp3'.")

    # Run command silently
    subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

def add_audio(video_path, audio_path, output_path, use_gpu=False):
    """

    Replaces the audio of a video with a new audio track.



    Args:

        video_path (str): Path to the video file.

        audio_path (str): Path to the audio file.

        output_path (str): Path where the final video will be saved.

        use_gpu (bool): If True, use GPU-accelerated video encoding.

    """
    os.makedirs(os.path.dirname(output_path), exist_ok=True)

    command = [
        "ffmpeg", "-y",                     # Overwrite without asking
        "-i", video_path,                  # Input video
        "-i", audio_path,                  # Input audio
        "-map", "0:v:0",                   # Use video from first input
        "-map", "1:a:0",                   # Use audio from second input
        "-shortest"                        # Trim to the shortest stream (audio/video)
    ]

    if use_gpu:
        command += ["-c:v", "h264_nvenc", "-preset", "fast"]
    else:
        command += ["-c:v", "copy"]

    command += ["-c:a", "aac", "-b:a", "192k", output_path]

    subprocess.run(command, check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)



def remove_background_from_video(uploaded_video_path,foreground_segmenter):
    # πŸ” Generate a single UUID to use for all related files
    uid = uuid.uuid4().hex[:8].upper()

    # Define all output paths using that UUID
    base_name = os.path.splitext(os.path.basename(uploaded_video_path))[0]
    base_name = re.sub(r'[^a-zA-Z\s]', '', base_name) 
    base_name = base_name.strip().replace(" ", "_")

    temp_video_path = f"./results/{base_name}_chunks_{uid}.mp4"
    audio_path = f"./results/{base_name}_audio_{uid}.wav"
    final_output_path = f"./results/{base_name}_final_{uid}.mp4"

    # Step 1: Extract frames
    frames = extract_all_frames_ffmpeg_gpu(
        video_path=uploaded_video_path,
        output_dir="frames",
        extension="png",
        use_gpu=gpu
    )

    # Step 2: Remove background (green screen)
    green_screen_frames = green_screen_batch(frames,foreground_segmenter)

    # Step 3: Rebuild video from frames
    green_screen_video_maker(uploaded_video_path, green_screen_frames, batch_size=100)

    # Step 4: Merge video chunks
    merge_video_chunks(output_path=os.path.basename(temp_video_path), use_gpu=gpu)

    # Step 5: Extract original audio
    extract_audio_from_video(uploaded_video_path, output_audio_path=audio_path)

    # Step 6: Add audio back
    add_audio(
        video_path=temp_video_path,
        audio_path=audio_path,
        output_path=final_output_path,
        use_gpu=True
    )

    return os.path.abspath(final_output_path)