File size: 8,037 Bytes
0ab9543
 
 
5f04d3d
0ab9543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import openai
import json
from typing import List, Dict
from callback_handler import BaseCallbackHandler
import tiktoken

def call_openai(
    messages: List[Dict[str, str]],
    functions: List[str] = None,
    stream: str = "no",
    model: str = "gpt-3.5-turbo",
    temperature: float = 0,
    callback: BaseCallbackHandler = None
  ) -> str:
  """
    Call openai with list of messages and optional list of functions. See description at openai website.

    Args:
        messages: messages passed to openai. list of dictionaries with keys: role=[system, user, assitant, function] + content= message
        functions: function list passed to openai
        stream: ["no", "sentence", "token"]
        model: name of openai model
        temperature: of openai model
        callback: callback handler class. If streaming, it is mandatory

    Returns:
        final message
  """

  current_state = None
  prompt_tokens = token_count(
    messages=messages,
    functions=functions
    )

  if functions == None:
    completion_tokens = -2
    response = openai.ChatCompletion.create(
      model = model,
      temperature=temperature,
      stream=True,
      messages=messages,
    )
  else:
    completion_tokens = -1
    response = openai.ChatCompletion.create(
      model = model,
      temperature=temperature,
      stream=True,
      messages=messages,
      functions=functions
    )

  for chunk in response:
    completion_tokens += 1
    data = json.loads(str(chunk["choices"][0]))
    delta = data["delta"]
    finish_reason = data["finish_reason"]

    if finish_reason is not None:
      if finish_reason == "function_call":
         completion_tokens += 6
      final_response = {
        "usage": {
          "completion_tokens": completion_tokens,
          "prompt_tokens": prompt_tokens,
        },
        "choices": []
      }

      if current_state == "function":
        d = {
          "finish_reason": "function_call",
          "message": {
            "content": None,
            "function_call": {
              "arguments": function_arg,
              "name": function_name
            },
            "role": "assistant"
          }
        }
        final_response["choices"].append(d)

      if current_state == "user":
        d = {
          "finish_reason": "stop",
          "message": {
            "content": message_all,
            "role": "assistant"
          }
        }
        final_response["choices"].append(d)

      if callback:
        callback.on_llm_end(response=final_response)
      return final_response

    else:
      if current_state == None:
        if 'function_call' in delta:
          current_state = "function"
          function_name = delta["function_call"]["name"]
          function_arg = ""
          # if stream != "no":
          #   s = f" - {function_name}"
          #   callback.on_llm_new_token(token=s)
        else:
          current_state = "user"
          message_stream = ""
          message_all = ""

      elif current_state == "function":
        function_arg += delta['function_call']['arguments']

      elif current_state == "user":
        token = delta["content"]
        message_all += token

        if stream == "token":
          callback.on_llm_new_token(token=token)
        if stream == "sentence":
          message_stream += token
          if "." in token or "!" in token or "?" in token or "\n" in token:
            if message_stream[-1] == "\n":
              callback.on_llm_new_token(token=message_stream[:-1])
            else:
              callback.on_llm_new_token(token=message_stream)
            message_stream = ""


def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613"):
    """Return the number of tokens used by a list of messages."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
#        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    if model in {
        "gpt-3.5-turbo-0613",
        "gpt-3.5-turbo-16k-0613",
        "gpt-4-0314",
        "gpt-4-32k-0314",
        "gpt-4-0613",
        "gpt-4-32k-0613",
        }:
        tokens_per_message = 3
        tokens_per_name = 1
    elif model == "gpt-3.5-turbo-0301":
        tokens_per_message = 4  # every message follows <|start|>{role/name}\n{content}<|end|>\n
        tokens_per_name = -1  # if there's a name, the role is omitted
    elif "gpt-3.5-turbo" in model:
#        print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
        return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
    elif "gpt-4" in model:
#        print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
        return num_tokens_from_messages(messages, model="gpt-4-0613")
    else:
        raise NotImplementedError(
            f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
        )
    num_tokens = 0
#    print(messages)
    for message in messages:
        num_tokens += tokens_per_message
        for key, value in message.items():
            if key == "function_call":
                num_tokens += tokens_per_name
                for k, v in value.items():
#                    print(k,v)
                    num_tokens += len(encoding.encode(v))
            if value != None and key != "function_call":
                num_tokens += len(encoding.encode(value))           
            if key == "name":
                num_tokens += tokens_per_name
    num_tokens += 3  # every reply is primed with <|start|>assistant<|message|>
    return num_tokens

def num_tokens_from_functions(functions, model="gpt-3.5-turbo-0613"):
    """Return the number of tokens used by a list of functions."""
    try:
        encoding = tiktoken.encoding_for_model(model)
    except KeyError:
#        print("Warning: model not found. Using cl100k_base encoding.")
        encoding = tiktoken.get_encoding("cl100k_base")
    
    num_tokens = 0
    for function in functions:
        function_tokens = len(encoding.encode(function['name']))
        function_tokens += len(encoding.encode(function['description']))
        
        if 'parameters' in function:
            parameters = function['parameters']
            if 'properties' in parameters:
                for propertiesKey in parameters['properties']:
                    function_tokens += len(encoding.encode(propertiesKey))
                    v = parameters['properties'][propertiesKey]
                    for field in v:
                        if field == 'type':
                            function_tokens += 2
                            function_tokens += len(encoding.encode(v['type']))
                        elif field == 'description':
                            function_tokens += 2
                            function_tokens += len(encoding.encode(v['description']))
                        elif field == 'enum':
                            function_tokens -= 3
                            for o in v['enum']:
                                function_tokens += 3
                                function_tokens += len(encoding.encode(o))
                        else:
                            dummy = 0
#                            print(f"Warning: not supported field: {field}")
                function_tokens += 16

        num_tokens += function_tokens

    num_tokens += 16 
    return num_tokens

def token_count(
    messages: List[Dict[str, str]], 
    functions: List[str] = None,
    model = "gpt-3.5-turbo-0613"
    ) -> int:
    
    msgs_tokens = num_tokens_from_messages(messages=messages, model=model)
    tokens_used = msgs_tokens
    if functions is not None:
        function_tokens = num_tokens_from_functions(functions=functions, model=model)
        tokens_used += function_tokens
    return tokens_used