Spaces:
Running
on
Zero
Running
on
Zero
File size: 39,232 Bytes
f69d33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "cSLfR2K1fRgR"
},
"source": [
"# Inference Notebook\n",
"\n",
"[MAXIM: Multi-Axis MLP for Image Processing (CVPR 2022 Oral)](https://github.com/google-research/maxim)\n",
"\n",
"**This is just the inference code. Maximum you can do is to come in with your images and get results using trained models**"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "vXxVwI1SfJc-"
},
"source": [
"# Clone repo and install dependencies"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "RbskPSxADHXM",
"outputId": "35c15104-7636-4ef6-cfda-f8ffe0e7e3fe"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
""
]
}
],
"source": [
"! git clone https://github.com/google-research/maxim/\n",
"%cd ./maxim\n",
"\n",
"!pip install -r requirements.txt\n",
"!pip install --upgrade jax\n",
"! pip install gdown\n",
"\n",
"!python setup.py build\n",
"! python setup.py install\n",
"\n",
"# https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/Enhancement/FiveK;tab=objects?prefix=&forceOnObjectsSortingFiltering=false"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "l06nrsoVdFRA"
},
"source": [
"# Imports and Defaults\n",
"Imports from libraries and from the modules written by authors of the repo\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "LEbaNP5IdNOQ"
},
"outputs": [],
"source": [
"from google.colab import drive # works only for colab\n",
"from PIL import Image\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import collections\n",
"import importlib\n",
"import io\n",
"import os\n",
"import math\n",
"import requests\n",
"from tqdm import tqdm\n",
"import gdown # to download weights from Drive\n",
"\n",
"import flax\n",
"import jax.numpy as jnp\n",
"import ml_collections\n",
"import numpy as np\n",
"import tensorflow as tf\n",
"from jax.experimental import jax2tf\n",
"\n",
"\n",
"# below code lines are from run_eval.py\n",
"_MODEL_FILENAME = 'maxim'\n",
"\n",
"_MODEL_VARIANT_DICT = {\n",
" 'Denoising': 'S-3',\n",
" 'Deblurring': 'S-3',\n",
" 'Deraining': 'S-2',\n",
" 'Dehazing': 'S-2',\n",
" 'Enhancement': 'S-2',\n",
"}\n",
"\n",
"_MODEL_CONFIGS = {\n",
" 'variant': '',\n",
" 'dropout_rate': 0.0,\n",
" 'num_outputs': 3,\n",
" 'use_bias': True,\n",
" 'num_supervision_scales': 3,\n",
"}\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EILubkkjc1P5"
},
"source": [
"# Link Google Drive for data input and output \n",
"Not necessary but ease of use for Data input / Output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "w4qz8CMTJonN"
},
"outputs": [],
"source": [
"# drive.mount('/content/gdrive/',)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "54_eNSRJdUHz"
},
"source": [
"# Helpers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "36QlK8Rfk5ai"
},
"outputs": [],
"source": [
"def sizeof_fmt(size, suffix='B'):\n",
" \"\"\"Get human readable file size.\n",
" Args:\n",
" size (int): File size.\n",
" suffix (str): Suffix. Default: 'B'.\n",
" Return:\n",
" str: Formated file siz.\n",
" \"\"\"\n",
" for unit in ['', 'K', 'M', 'G', 'T', 'P', 'E', 'Z']:\n",
" if abs(size) < 1024.0:\n",
" return f'{size:3.1f} {unit}{suffix}'\n",
" size /= 1024.0\n",
" return f'{size:3.1f} Y{suffix}'\n",
"\n",
"\n",
"def download_file_from_google_drive(file_id, save_path):\n",
" \"\"\"Download files from google drive.\n",
"\n",
" Ref:\n",
" https://stackoverflow.com/questions/25010369/wget-curl-large-file-from-google-drive # noqa E501\n",
"\n",
" Args:\n",
" file_id (str): File id.\n",
" save_path (str): Save path.\n",
" \"\"\"\n",
"\n",
" session = requests.Session()\n",
" URL = 'https://docs.google.com/uc?export=download'\n",
" params = {'id': file_id}\n",
"\n",
" response = session.get(URL, params=params, stream=True)\n",
" token = get_confirm_token(response)\n",
" if token:\n",
" params['confirm'] = token\n",
" response = session.get(URL, params=params, stream=True)\n",
"\n",
" # get file size\n",
" response_file_size = session.get(\n",
" URL, params=params, stream=True, headers={'Range': 'bytes=0-2'})\n",
" if 'Content-Range' in response_file_size.headers:\n",
" file_size = int(\n",
" response_file_size.headers['Content-Range'].split('/')[1])\n",
" else:\n",
" file_size = None\n",
"\n",
" save_response_content(response, save_path, file_size)\n",
"\n",
"\n",
"def get_confirm_token(response):\n",
" for key, value in response.cookies.items():\n",
" if key.startswith('download_warning'):\n",
" return value\n",
" return None\n",
"\n",
"\n",
"def save_response_content(response,\n",
" destination,\n",
" file_size=None,\n",
" chunk_size=32768):\n",
" if file_size is not None:\n",
" pbar = tqdm(total=math.ceil(file_size / chunk_size), unit='chunk')\n",
"\n",
" readable_file_size = sizeof_fmt(file_size)\n",
" else:\n",
" pbar = None\n",
"\n",
" with open(destination, 'wb') as f:\n",
" downloaded_size = 0\n",
" for chunk in response.iter_content(chunk_size):\n",
" downloaded_size += chunk_size\n",
" if pbar is not None:\n",
" pbar.update(1)\n",
" pbar.set_description(f'Download {sizeof_fmt(downloaded_size)} '\n",
" f'/ {readable_file_size}')\n",
" if chunk: # filter out keep-alive new chunks\n",
" f.write(chunk)\n",
" if pbar is not None:\n",
" pbar.close()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TY2GyIbn6j85"
},
"outputs": [],
"source": [
"\n",
"def resize(path, new_width_height = 1280, save_image = False, convert_RGB = True, clip_full_hd = False, quality = 100):\n",
" '''\n",
" Resize and return Given Image\n",
" args:\n",
" path: Image Path\n",
" new_width_height = Reshaped image's width and height. # If integer is given, it'll keep the aspect ratio as it is by shrinking the Bigger dimension (width or height) to the max of new_width_height and then shring the smaller dimension accordingly \n",
" save_image = Whether to save the image or not\n",
" convert_RGB: Whether to Convert the RGBA image to RGB (by default backgroud is white)\n",
" '''\n",
" image = Image.open(path)\n",
" w, h = image.size\n",
"\n",
" fixed_size = new_width_height if isinstance(new_width_height, int) else False\n",
"\n",
" if fixed_size:\n",
" if h > w:\n",
" fixed_height = fixed_size\n",
" height_percent = (fixed_height / float(h))\n",
" width_size = int((float(w) * float(height_percent)))\n",
" image = image.resize((width_size, fixed_height), Image.NEAREST)\n",
"\n",
" else:\n",
" fixed_width = fixed_size\n",
" width_percent = (fixed_width / float(w))\n",
" height_size = int((float(h) * float(width_percent)))\n",
" image = image.resize((fixed_width, height_size), Image.NEAREST) # Try Image.ANTIALIAS inplace of Image.NEAREST\n",
"\n",
" else:\n",
" image = image.resize(new_width_height)\n",
"\n",
" if image.mode == \"RGBA\" and convert_RGB:\n",
" # image.load() # required for png.split()\n",
" # new = Image.new(\"RGB\", image.size, (255, 255, 255)) # White Background\n",
" # image = new.paste(image, mask=image.split()[3]) # 3 is the alpha channel\n",
"\n",
" new = Image.new(\"RGBA\", image.size, \"WHITE\") # Create a white rgba background\n",
" new.paste(image, (0, 0), image) # Paste the image on the background.\n",
" image = new.convert('RGB')\n",
"\n",
" if save_image:\n",
" image.save(path, quality = quality)\n",
"\n",
" return image\n",
"\n",
"\n",
"class DummyFlags():\n",
" def __init__(self, ckpt_path:str, task:str, input_dir: str = \"./maxim/images/Enhancement\", output_dir:str = \"./maxim/images/Results\", has_target:bool = False, save_images:bool = True, geometric_ensemble:bool = False):\n",
" '''\n",
" Builds the dummy flags which replicates the behaviour of Terminal CLI execution (same as ArgParse)\n",
" args:\n",
" ckpt_path: Saved Model CheckPoint: Find all the checkpoints for pre trained models at https://console.cloud.google.com/storage/browser/gresearch/maxim/ckpt/\n",
" task: Task for which the model waas trained. Each task uses different Data and Checkpoints. Find the details of tasks and respective checkpoints details at: https://github.com/google-research/maxim#results-and-pre-trained-models\n",
" input_dir: Input Directory. We do not need it here as we are directly passing one image at a time\n",
" output_dir: Also not needed in out code\n",
" has_target: Used to calculate PSNR and SSIM calculation. Not needed in our case\n",
" save_images: Used in CLI command where images were saved in loop. Not needed in our case\n",
" geometric_ensemble: Was used in training part and as it is just an Inference part, it is not needed\n",
"\n",
" '''\n",
" self.ckpt_path = ckpt_path\n",
" self.task = task\n",
" self.input_dir = input_dir\n",
" self.output_dir = output_dir\n",
" self.has_target = has_target\n",
" self.save_images = save_images\n",
" self.geometric_ensemble = geometric_ensemble\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JkgUJDR0daUP"
},
"source": [
"# Refactored code from authors (`run_eval.py`)\n",
"\n",
"**NOTE**: This is not my code. I just changed the structure, redirected dependencies within modules, removed redundant imports and code and bla bla bla...."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9oUVYnXQK_WV"
},
"outputs": [],
"source": [
"# Copyright 2022 Google LLC.\n",
"#\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# http://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License.\n",
"\n",
"\n",
"def recover_tree(keys, values):\n",
" \"\"\"Recovers a tree as a nested dict from flat names and values.\n",
"\n",
" This function is useful to analyze checkpoints that are saved by our programs\n",
" without need to access the exact source code of the experiment. In particular,\n",
" it can be used to extract an reuse various subtrees of the scheckpoint, e.g.\n",
" subtree of parameters.\n",
" Args:\n",
" keys: a list of keys, where '/' is used as separator between nodes.\n",
" values: a list of leaf values.\n",
" Returns:\n",
" A nested tree-like dict.\n",
" \"\"\"\n",
" tree = {}\n",
" sub_trees = collections.defaultdict(list)\n",
" for k, v in zip(keys, values):\n",
" if '/' not in k:\n",
" tree[k] = v\n",
" else:\n",
" k_left, k_right = k.split('/', 1)\n",
" sub_trees[k_left].append((k_right, v))\n",
" for k, kv_pairs in sub_trees.items():\n",
" k_subtree, v_subtree = zip(*kv_pairs)\n",
" tree[k] = recover_tree(k_subtree, v_subtree)\n",
" return tree\n",
"\n",
"\n",
"def mod_padding_symmetric(image, factor=64):\n",
" \"\"\"Padding the image to be divided by factor.\"\"\"\n",
" height, width = image.shape[0], image.shape[1]\n",
" height_pad, width_pad = ((height + factor) // factor) * factor, (\n",
" (width + factor) // factor) * factor\n",
" padh = height_pad - height if height % factor != 0 else 0\n",
" padw = width_pad - width if width % factor != 0 else 0\n",
" image = jnp.pad(\n",
" image, [(padh // 2, padh // 2), (padw // 2, padw // 2), (0, 0)],\n",
" mode='reflect')\n",
" return image\n",
"\n",
"\n",
"def get_params(ckpt_path):\n",
" \"\"\"Get params checkpoint.\"\"\"\n",
"\n",
" with tf.io.gfile.GFile(ckpt_path, 'rb') as f:\n",
" data = f.read()\n",
" values = np.load(io.BytesIO(data))\n",
" params = recover_tree(*zip(*values.items()))\n",
" params = params['opt']['target']\n",
"\n",
" return params\n",
"\n",
"\n",
"def calculate_psnr(img1, img2, crop_border, test_y_channel=False):\n",
" \"\"\"Calculate PSNR (Peak Signal-to-Noise Ratio).\n",
"\n",
" Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio\n",
" Args:\n",
" img1 (ndarray): Images with range [0, 255].\n",
" img2 (ndarray): Images with range [0, 255].\n",
" crop_border (int): Cropped pixels in each edge of an image. These\n",
" pixels are not involved in the PSNR calculation.\n",
" test_y_channel (bool): Test on Y channel of YCbCr. Default: False.\n",
" Returns:\n",
" float: psnr result.\n",
" \"\"\"\n",
" assert img1.shape == img2.shape, (\n",
" f'Image shapes are differnet: {img1.shape}, {img2.shape}.')\n",
" img1 = img1.astype(np.float64)\n",
" img2 = img2.astype(np.float64)\n",
"\n",
" if crop_border != 0:\n",
" img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...]\n",
" img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...]\n",
"\n",
" if test_y_channel:\n",
" img1 = to_y_channel(img1)\n",
" img2 = to_y_channel(img2)\n",
"\n",
" mse = np.mean((img1 - img2)**2)\n",
" if mse == 0:\n",
" return float('inf')\n",
" return 20. * np.log10(255. / np.sqrt(mse))\n",
"\n",
"\n",
"def _convert_input_type_range(img):\n",
" \"\"\"Convert the type and range of the input image.\n",
"\n",
" It converts the input image to np.float32 type and range of [0, 1].\n",
" It is mainly used for pre-processing the input image in colorspace\n",
" convertion functions such as rgb2ycbcr and ycbcr2rgb.\n",
" Args:\n",
" img (ndarray): The input image. It accepts:\n",
" 1. np.uint8 type with range [0, 255];\n",
" 2. np.float32 type with range [0, 1].\n",
" Returns:\n",
" (ndarray): The converted image with type of np.float32 and range of\n",
" [0, 1].\n",
" \"\"\"\n",
" img_type = img.dtype\n",
" img = img.astype(np.float32)\n",
" if img_type == np.float32:\n",
" pass\n",
" elif img_type == np.uint8:\n",
" img /= 255.\n",
" else:\n",
" raise TypeError('The img type should be np.float32 or np.uint8, '\n",
" f'but got {img_type}')\n",
" return img\n",
"\n",
"\n",
"def _convert_output_type_range(img, dst_type):\n",
" \"\"\"Convert the type and range of the image according to dst_type.\n",
"\n",
" It converts the image to desired type and range. If `dst_type` is np.uint8,\n",
" images will be converted to np.uint8 type with range [0, 255]. If\n",
" `dst_type` is np.float32, it converts the image to np.float32 type with\n",
" range [0, 1].\n",
" It is mainly used for post-processing images in colorspace convertion\n",
" functions such as rgb2ycbcr and ycbcr2rgb.\n",
" Args:\n",
" img (ndarray): The image to be converted with np.float32 type and\n",
" range [0, 255].\n",
" dst_type (np.uint8 | np.float32): If dst_type is np.uint8, it\n",
" converts the image to np.uint8 type with range [0, 255]. If\n",
" dst_type is np.float32, it converts the image to np.float32 type\n",
" with range [0, 1].\n",
" Returns:\n",
" (ndarray): The converted image with desired type and range.\n",
" \"\"\"\n",
" if dst_type not in (np.uint8, np.float32):\n",
" raise TypeError('The dst_type should be np.float32 or np.uint8, '\n",
" f'but got {dst_type}')\n",
" if dst_type == np.uint8:\n",
" img = img.round()\n",
" else:\n",
" img /= 255.\n",
"\n",
" return img.astype(dst_type)\n",
"\n",
"\n",
"def rgb2ycbcr(img, y_only=False):\n",
" \"\"\"Convert a RGB image to YCbCr image.\n",
"\n",
" This function produces the same results as Matlab's `rgb2ycbcr` function.\n",
" It implements the ITU-R BT.601 conversion for standard-definition\n",
" television. See more details in\n",
" https://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion.\n",
" It differs from a similar function in cv2.cvtColor: `RGB <-> YCrCb`.\n",
" In OpenCV, it implements a JPEG conversion. See more details in\n",
" https://en.wikipedia.org/wiki/YCbCr#JPEG_conversion.\n",
"\n",
" Args:\n",
" img (ndarray): The input image. It accepts:\n",
" 1. np.uint8 type with range [0, 255];\n",
" 2. np.float32 type with range [0, 1].\n",
" y_only (bool): Whether to only return Y channel. Default: False.\n",
" Returns:\n",
" ndarray: The converted YCbCr image. The output image has the same type\n",
" and range as input image.\n",
" \"\"\"\n",
" img_type = img.dtype\n",
" img = _convert_input_type_range(img)\n",
" if y_only:\n",
" out_img = np.dot(img, [65.481, 128.553, 24.966]) + 16.0\n",
" else:\n",
" out_img = np.matmul(img,\n",
" [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],\n",
" [24.966, 112.0, -18.214]]) + [16, 128, 128]\n",
" out_img = _convert_output_type_range(out_img, img_type)\n",
" return out_img\n",
"\n",
"\n",
"def to_y_channel(img):\n",
" \"\"\"Change to Y channel of YCbCr.\n",
"\n",
" Args:\n",
" img (ndarray): Images with range [0, 255].\n",
" Returns:\n",
" (ndarray): Images with range [0, 255] (float type) without round.\n",
" \"\"\"\n",
" img = img.astype(np.float32) / 255.\n",
" if img.ndim == 3 and img.shape[2] == 3:\n",
" img = rgb2ycbcr(img, y_only=True)\n",
" img = img[..., None]\n",
" return img * 255.\n",
"\n",
"\n",
"def augment_image(image, times=8):\n",
" \"\"\"Geometric augmentation.\"\"\"\n",
" if times == 4: # only rotate image\n",
" images = []\n",
" for k in range(0, 4):\n",
" images.append(np.rot90(image, k=k))\n",
" images = np.stack(images, axis=0)\n",
" elif times == 8: # roate and flip image\n",
" images = []\n",
" for k in range(0, 4):\n",
" images.append(np.rot90(image, k=k))\n",
" image = np.fliplr(image)\n",
" for k in range(0, 4):\n",
" images.append(np.rot90(image, k=k))\n",
" images = np.stack(images, axis=0)\n",
" else:\n",
" raise Exception(f'Error times: {times}')\n",
" return images\n",
"\n",
"\n",
"def deaugment_image(images, times=8):\n",
" \"\"\"Reverse the geometric augmentation.\"\"\"\n",
"\n",
" if times == 4: # only rotate image\n",
" image = []\n",
" for k in range(0, 4):\n",
" image.append(np.rot90(images[k], k=4-k))\n",
" image = np.stack(image, axis=0)\n",
" image = np.mean(image, axis=0)\n",
" elif times == 8: # roate and flip image\n",
" image = []\n",
" for k in range(0, 4):\n",
" image.append(np.rot90(images[k], k=4-k))\n",
" for k in range(0, 4):\n",
" image.append(np.fliplr(np.rot90(images[4+k], k=4-k)))\n",
" image = np.mean(image, axis=0)\n",
" else:\n",
" raise Exception(f'Error times: {times}')\n",
" return image\n",
"\n",
"\n",
"def is_image_file(filename):\n",
" \"\"\"Check if it is an valid image file by extension.\"\"\"\n",
" return any(\n",
" filename.endswith(extension)\n",
" for extension in ['jpeg', 'JPEG', 'jpg', 'png', 'JPG', 'PNG', 'gif'])\n",
"\n",
"\n",
"def save_img(img, pth):\n",
" \"\"\"Save an image to disk.\n",
"\n",
" Args:\n",
" img: jnp.ndarry, [height, width, channels], img will be clipped to [0, 1]\n",
" before saved to pth.\n",
" pth: string, path to save the image to.\n",
" \"\"\"\n",
" Image.fromarray(np.array(\n",
" (np.clip(img, 0., 1.) * 255.).astype(jnp.uint8))).save(pth, 'PNG')\n",
"\n",
"\n",
"def make_shape_even(image):\n",
" \"\"\"Pad the image to have even shapes.\"\"\"\n",
" height, width = image.shape[0], image.shape[1]\n",
" padh = 1 if height % 2 != 0 else 0\n",
" padw = 1 if width % 2 != 0 else 0\n",
" image = jnp.pad(image, [(0, padh), (0, padw), (0, 0)], mode='reflect')\n",
" return image\n",
"\n",
"\n",
"# Refactored code --------------------------------------------------------------------------------------------------------------------\n",
"\n",
"def build_model(task = \"Enhancement\"):\n",
" model_mod = importlib.import_module(f'maxim.models.{_MODEL_FILENAME}')\n",
" model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS)\n",
"\n",
" model_configs.variant = _MODEL_VARIANT_DICT[task]\n",
"\n",
" model = model_mod.Model(**model_configs)\n",
" return model\n",
"\n",
"\n",
"def pre_process(input_file):\n",
" '''\n",
" Pre-process the image before sending to the model\n",
" '''\n",
" input_img = np.asarray(Image.open(input_file).convert('RGB'),np.float32) / 255.\n",
" # Padding images to have even shapes\n",
" height, width = input_img.shape[0], input_img.shape[1]\n",
" input_img = make_shape_even(input_img)\n",
" height_even, width_even = input_img.shape[0], input_img.shape[1]\n",
"\n",
" # padding images to be multiplies of 64\n",
" input_img = mod_padding_symmetric(input_img, factor=64)\n",
" input_img = np.expand_dims(input_img, axis=0)\n",
"\n",
" return input_img, height, width, height_even, width_even\n",
"\n",
"\n",
"def predict(input_img):\n",
" # handle multi-stage outputs, obtain the last scale output of last stage\n",
" return model.apply({'params': flax.core.freeze(params)}, input_img)\n",
"\n",
"\n",
"def post_process(preds, height, width, height_even, width_even):\n",
" '''\n",
" Post process the image coming out from prediction\n",
" '''\n",
" if isinstance(preds, list):\n",
" preds = preds[-1]\n",
" if isinstance(preds, list):\n",
" preds = preds[-1]\n",
"\n",
" # De-ensemble by averaging inferenced results.\n",
" preds = np.array(preds[0], np.float32)\n",
"\n",
" # unpad images to get the original resolution\n",
" new_height, new_width = preds.shape[0], preds.shape[1]\n",
" h_start = new_height // 2 - height_even // 2\n",
" h_end = h_start + height\n",
" w_start = new_width // 2 - width_even // 2\n",
" w_end = w_start + width\n",
" preds = preds[h_start:h_end, w_start:w_end, :]\n",
" return np.array((np.clip(preds, 0., 1.) * 255.).astype(jnp.uint8))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JOfe8u7_Wxks"
},
"source": [
"# Default Configs and Model Building\n",
"**Steps**:\n",
"1. Get the name of `task` and the respective `ckpt` (pre-trained saved model for that task) [Follow this link for task name and model](https://github.com/google-research/maxim#results-and-pre-trained-models)\n",
"2. Pass in the proper `task` and `ckpt_path` to the `DummyFlags`\n",
"3. Build Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Fcp68HNFf2Fy",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "09761106-e8cd-4880-bea6-e6e0840effff"
},
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"Downloading...\n",
"From: https://drive.google.com/uc?id=1-BRKozXh81PtwoMZ9QN3kCAieLzozHIq\n",
"To: /content/maxim/adobe.npz\n",
"100%|██████████| 172M/172M [00:01<00:00, 166MB/s]\n"
]
}
],
"source": [
"weight_drive_path = 'https://drive.google.com/uc?id=1-BRKozXh81PtwoMZ9QN3kCAieLzozHIq' # Path of the weights file which in the Google Drive\n",
"MODEL_PATH = './adobe.npz' # name of the model to be saved as\n",
"\n",
"gdown.download(weight_drive_path, MODEL_PATH, quiet=False) # Download Model weights to your current instance\n",
"\n",
"\n",
"FLAGS = DummyFlags(ckpt_path = MODEL_PATH, task = \"Enhancement\") # Path to your checkpoint and task name\n",
"\n",
"params = get_params(FLAGS.ckpt_path) # Parse the config\n",
"\n",
"model = build_model() # Build Model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "c_zxNUE4TugU"
},
"source": [
"# Inference\n",
"For Inference, you just need to pasd the *Image Path* to the the `predict` function. Result will be a `Numpy` array. You can easily save that by converting to `PIL` image.\n",
"\n",
"\n",
"**Note**: You might get `OOM` or Out of memory issue which is not a big deal if you image size is too big. In that case, you just need to use the `resize` function\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jC35dD6ViBwZ"
},
"outputs": [],
"source": [
"# image_path = \"path/to/my/image.extension\" # your image path\n",
"# enhanced_image_array = predict(image_path) # Get predictions\n",
"\n",
"# enhanced_pil_image = Image.fromarray(enhanced_image_array) # get PIL image from array\n",
"# enhanced_pil_image.save(\"path/to/output/directory/image.extension\") # Save the image\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7x5dCbuOvIDz"
},
"source": [
"# Test Images from Drive and Save\n",
"\n",
"**Note**: For huge number of images (say 50 or more), copy all the images from Google Drive to the current machine's drive else it will make the process so slow. And also for saving the enhanced image to drive, Get predictions for all the images at once, Save them here first and them copy a zip file to the drive."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "W3YwEUHmtQSl"
},
"outputs": [],
"source": [
"# images = [\"../gdrive/My Drive/maxim/input/\"+i for i in os.listdir(\"../gdrive/My Drive/maxim/input/\") if i.endswith(('jpeg', 'png', 'jpg',\"PNG\",\"JPEG\",\"JPG\"))]\n",
"\n",
"# # _ = [resize(path, 1920, save_image=True) for path in images] # Resize Images to 1920 as the max dimension's size else it'll blow the GPU / CPU memory\n",
"\n",
"\n",
"# for path in images:\n",
"# im = Image.fromarray(predict(path))\n",
"# im.save(\"../gdrive/My Drive/maxim/output/\"+path.split('/')[-1])\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "f9Wv9yIIamJL"
},
"source": [
"# Visualization\n",
"\n",
"The below code demonstrates how to predict from Image URL. You can directly use `predict(image_path)`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Q1T544sZan4d",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 491
},
"outputId": "17f4b919-c811-4659-a178-95d02d8660dc"
},
"outputs": [
{
"output_type": "stream",
"text": [
"\u001b[1;30;43mThis cell output is too large and can only be displayed while logged in.\u001b[0m\n"
]
}
],
"source": [
"import requests\n",
"from io import BytesIO\n",
"\n",
"url = \"https://phototraces.b-cdn.net/wp-content/uploads/2021/02/id_Free_RAW_Photos_for_Editing_09_Uneditedd.jpg\"\n",
"# url = \"https://phototraces.b-cdn.net/wp-content/uploads/2021/03/Free_RAW_Photos_for_Editing_13_Unedited.jpg\"\n",
"\n",
"image_bytes = BytesIO(requests.get(url).content)\n",
"\n",
"input_img, height, width, height_even, width_even = pre_process(image_bytes)\n",
"preds = predict(input_img)\n",
"result = post_process(preds, height, width, height_even, width_even)\n",
"\n",
"f, ax = plt.subplots(1,2, figsize = (35,20))\n",
"\n",
"ax[0].imshow(np.array(Image.open(image_bytes))) # Original image\n",
"ax[1].imshow(result) # retouched image\n",
"\n",
"ax[0].set_title(\"Original Image\")\n",
"ax[1].set_title(\"Enhanced Image\")\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "code",
"source": [
"tf_predict = tf.function(\n",
" jax2tf.convert(predict, enable_xla=False),\n",
" input_signature=[\n",
" tf.TensorSpec(shape=[1, 704, 1024, 3], dtype=tf.float32, name='input_image')\n",
" ],\n",
" autograph=False)"
],
"metadata": {
"id": "nZGyNC8pttv7"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"converter = tf.lite.TFLiteConverter.from_concrete_functions(\n",
" [tf_predict.get_concrete_function()], tf_predict)\n",
"\n",
"converter.target_spec.supported_ops = [\n",
" tf.lite.OpsSet.TFLITE_BUILTINS, # enable TensorFlow Lite ops.\n",
" tf.lite.OpsSet.SELECT_TF_OPS # enable TensorFlow ops.\n",
"]\n",
"tflite_float_model = converter.convert()\n",
"\n",
"with open('./float_model.tflite', \"wb\") as f: f.write(tflite_float_model)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "igxeGKfIyqLS",
"outputId": "2c7d6ae3-8c84-421f-dc83-f6e0c69cc6c5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"WARNING:tensorflow:@custom_gradient grad_fn has 'variables' in signature, but no ResourceVariables were used on the forward pass.\n"
]
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING:tensorflow:@custom_gradient grad_fn has 'variables' in signature, but no ResourceVariables were used on the forward pass.\n",
"WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"converter.optimizations = [tf.lite.Optimize.DEFAULT]\n",
"tflite_quantized_model = converter.convert()\n",
"\n",
"with open('./quantized.tflite', 'wb') as f: f.write(tflite_quantized_model)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "pTbjUpn-yxl1",
"outputId": "fcb29b97-825c-4d6b-b921-0452bcf003a0"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"WARNING:absl:Buffer deduplication procedure will be skipped when flatbuffer library is not properly loaded\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Load quantized TFLite model\n",
"tflite_interpreter_quant = tf.lite.Interpreter(model_path='./maxim/quantized.tflite')\n",
"\n",
"# Learn about its input and output details\n",
"input_details = tflite_interpreter_quant.get_input_details()\n",
"output_details = tflite_interpreter_quant.get_output_details()\n",
"\n",
"# Resize input and output tensors to handle batch of desired size\n",
"# tflite_interpreter_quant.resize_tensor_input(input_details[0]['index'], (1, 704, 1024, 3))\n",
"# tflite_interpreter_quant.resize_tensor_input(output_details[0]['index'], (1, 176, 256, 3))\n",
"tflite_interpreter_quant.allocate_tensors()\n",
"\n",
"input_details = tflite_interpreter_quant.get_input_details()\n",
"output_details = tflite_interpreter_quant.get_output_details()\n",
"\n",
"\n",
"# # Run inference\n",
"val_image_batch = tf.random.normal(shape = (1, 704, 1024, 3), dtype = tf.float32)\n",
"tflite_interpreter_quant.set_tensor(input_details[0]['index'], val_image_batch)\n",
"\n",
"tflite_interpreter_quant.invoke()\n",
"\n",
"tflite_q_model_predictions = tflite_interpreter_quant.get_tensor(output_details[0]['index'])\n",
"print(\"\\nPrediction results shape:\", tflite_q_model_predictions.shape)"
],
"metadata": {
"id": "XY0M5SFg4Zw8"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "RgsmrC0U7v5h"
},
"execution_count": null,
"outputs": []
}
],
"metadata": {
"colab": {
"collapsed_sections": [],
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"gpuClass": "standard"
},
"nbformat": 4,
"nbformat_minor": 0
} |