Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,576 Bytes
f69d33f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 |
# Copyright 2022 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main file for the MAXIM model."""
import functools
from typing import Any, Sequence, Tuple
import einops
import flax.linen as nn
import jax
import jax.numpy as jnp
Conv3x3 = functools.partial(nn.Conv, kernel_size=(3, 3))
Conv1x1 = functools.partial(nn.Conv, kernel_size=(1, 1))
ConvT_up = functools.partial(nn.ConvTranspose,
kernel_size=(2, 2),
strides=(2, 2))
Conv_down = functools.partial(nn.Conv,
kernel_size=(4, 4),
strides=(2, 2))
weight_initializer = nn.initializers.normal(stddev=2e-2)
class MlpBlock(nn.Module):
"""A 1-hidden-layer MLP block, applied over the last dimension."""
mlp_dim: int
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, d = x.shape
x = nn.Dense(self.mlp_dim, use_bias=self.use_bias,
kernel_init=weight_initializer)(x)
x = nn.gelu(x)
x = nn.Dropout(rate=self.dropout_rate)(x, deterministic)
x = nn.Dense(d, use_bias=self.use_bias,
kernel_init=weight_initializer)(x)
return x
def block_images_einops(x, patch_size):
"""Image to patches."""
batch, height, width, channels = x.shape
grid_height = height // patch_size[0]
grid_width = width // patch_size[1]
x = einops.rearrange(
x, "n (gh fh) (gw fw) c -> n (gh gw) (fh fw) c",
gh=grid_height, gw=grid_width, fh=patch_size[0], fw=patch_size[1])
return x
def unblock_images_einops(x, grid_size, patch_size):
"""patches to images."""
x = einops.rearrange(
x, "n (gh gw) (fh fw) c -> n (gh fh) (gw fw) c",
gh=grid_size[0], gw=grid_size[1], fh=patch_size[0], fw=patch_size[1])
return x
class UpSampleRatio(nn.Module):
"""Upsample features given a ratio > 0."""
features: int
ratio: float
use_bias: bool = True
@nn.compact
def __call__(self, x):
n, h, w, c = x.shape
x = jax.image.resize(
x,
shape=(n, int(h * self.ratio), int(w * self.ratio), c),
method="bilinear")
x = Conv1x1(features=self.features, use_bias=self.use_bias)(x)
return x
class CALayer(nn.Module):
"""Squeeze-and-excitation block for channel attention.
ref: https://arxiv.org/abs/1709.01507
"""
features: int
reduction: int = 4
use_bias: bool = True
@nn.compact
def __call__(self, x):
# 2D global average pooling
y = jnp.mean(x, axis=[1, 2], keepdims=True)
# Squeeze (in Squeeze-Excitation)
y = Conv1x1(self.features // self.reduction, use_bias=self.use_bias)(y)
y = nn.relu(y)
# Excitation (in Squeeze-Excitation)
y = Conv1x1(self.features, use_bias=self.use_bias)(y)
y = nn.sigmoid(y)
return x * y
class RCAB(nn.Module):
"""Residual channel attention block. Contains LN,Conv,lRelu,Conv,SELayer."""
features: int
reduction: int = 4
lrelu_slope: float = 0.2
use_bias: bool = True
@nn.compact
def __call__(self, x):
shortcut = x
x = nn.LayerNorm(name="LayerNorm")(x)
x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv1")(x)
x = nn.leaky_relu(x, negative_slope=self.lrelu_slope)
x = Conv3x3(features=self.features, use_bias=self.use_bias, name="conv2")(x)
x = CALayer(features=self.features, reduction=self.reduction,
use_bias=self.use_bias, name="channel_attention")(x)
return x + shortcut
class GridGatingUnit(nn.Module):
"""A SpatialGatingUnit as defined in the gMLP paper.
The 'spatial' dim is defined as the second last.
If applied on other dims, you should swapaxes first.
"""
use_bias: bool = True
@nn.compact
def __call__(self, x):
u, v = jnp.split(x, 2, axis=-1)
v = nn.LayerNorm(name="intermediate_layernorm")(v)
n = x.shape[-3] # get spatial dim
v = jnp.swapaxes(v, -1, -3)
v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v)
v = jnp.swapaxes(v, -1, -3)
return u * (v + 1.)
class GridGmlpLayer(nn.Module):
"""Grid gMLP layer that performs global mixing of tokens."""
grid_size: Sequence[int]
use_bias: bool = True
factor: int = 2
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, num_channels = x.shape
gh, gw = self.grid_size
fh, fw = h // gh, w // gw
x = block_images_einops(x, patch_size=(fh, fw))
# gMLP1: Global (grid) mixing part, provides global grid communication.
y = nn.LayerNorm(name="LayerNorm")(x)
y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(y)
y = nn.gelu(y)
y = GridGatingUnit(use_bias=self.use_bias, name="GridGatingUnit")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic)
x = x + y
x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw))
return x
class BlockGatingUnit(nn.Module):
"""A SpatialGatingUnit as defined in the gMLP paper.
The 'spatial' dim is defined as the **second last**.
If applied on other dims, you should swapaxes first.
"""
use_bias: bool = True
@nn.compact
def __call__(self, x):
u, v = jnp.split(x, 2, axis=-1)
v = nn.LayerNorm(name="intermediate_layernorm")(v)
n = x.shape[-2] # get spatial dim
v = jnp.swapaxes(v, -1, -2)
v = nn.Dense(n, use_bias=self.use_bias, kernel_init=weight_initializer)(v)
v = jnp.swapaxes(v, -1, -2)
return u * (v + 1.)
class BlockGmlpLayer(nn.Module):
"""Block gMLP layer that performs local mixing of tokens."""
block_size: Sequence[int]
use_bias: bool = True
factor: int = 2
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
n, h, w, num_channels = x.shape
fh, fw = self.block_size
gh, gw = h // fh, w // fw
x = block_images_einops(x, patch_size=(fh, fw))
# MLP2: Local (block) mixing part, provides within-block communication.
y = nn.LayerNorm(name="LayerNorm")(x)
y = nn.Dense(num_channels * self.factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(y)
y = nn.gelu(y)
y = BlockGatingUnit(use_bias=self.use_bias, name="BlockGatingUnit")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic)
x = x + y
x = unblock_images_einops(x, grid_size=(gh, gw), patch_size=(fh, fw))
return x
class ResidualSplitHeadMultiAxisGmlpLayer(nn.Module):
"""The multi-axis gated MLP block."""
block_size: Sequence[int]
grid_size: Sequence[int]
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
use_bias: bool = True
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
shortcut = x
n, h, w, num_channels = x.shape
x = nn.LayerNorm(name="LayerNorm_in")(x)
x = nn.Dense(num_channels * self.input_proj_factor, use_bias=self.use_bias,
kernel_init=weight_initializer, name="in_project")(x)
x = nn.gelu(x)
u, v = jnp.split(x, 2, axis=-1)
# GridGMLPLayer
u = GridGmlpLayer(
grid_size=self.grid_size,
factor=self.grid_gmlp_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name="GridGmlpLayer")(u, deterministic)
# BlockGMLPLayer
v = BlockGmlpLayer(
block_size=self.block_size,
factor=self.block_gmlp_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name="BlockGmlpLayer")(v, deterministic)
x = jnp.concatenate([u, v], axis=-1)
x = nn.Dense(num_channels, use_bias=self.use_bias,
kernel_init=weight_initializer, name="out_project")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic)
x = x + shortcut
return x
class RDCAB(nn.Module):
"""Residual dense channel attention block. Used in Bottlenecks."""
features: int
reduction: int = 16
use_bias: bool = True
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x, deterministic=True):
y = nn.LayerNorm(name="LayerNorm")(x)
y = MlpBlock(
mlp_dim=self.features,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="channel_mixing")(
y, deterministic=deterministic)
y = CALayer(
features=self.features,
reduction=self.reduction,
use_bias=self.use_bias,
name="channel_attention")(
y)
x = x + y
return x
class BottleneckBlock(nn.Module):
"""The bottleneck block consisting of multi-axis gMLP block and RDCAB."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic):
"""Applies the Mixer block to inputs."""
assert x.ndim == 4 # Input has shape [batch, h, w, c]
n, h, w, num_channels = x.shape
# input projection
x = Conv1x1(self.features, use_bias=self.use_bias, name="input_proj")(x)
shortcut_long = x
for i in range(self.num_groups):
x = ResidualSplitHeadMultiAxisGmlpLayer(
grid_size=self.grid_size,
block_size=self.block_size,
grid_gmlp_factor=self.grid_gmlp_factor,
block_gmlp_factor=self.block_gmlp_factor,
input_proj_factor=self.input_proj_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic)
# Channel-mixing part, which provides within-patch communication.
x = RDCAB(
features=self.features,
reduction=self.channels_reduction,
use_bias=self.use_bias,
name=f"channel_attention_block_1_{i}")(
x)
# long skip-connect
x = x + shortcut_long
return x
class UNetEncoderBlock(nn.Module):
"""Encoder block in MAXIM."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
lrelu_slope: float = 0.2
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
downsample: bool = True
use_global_mlp: bool = True
use_bias: bool = True
use_cross_gating: bool = False
@nn.compact
def __call__(self, x: jnp.ndarray, skip: jnp.ndarray = None,
enc: jnp.ndarray = None, dec: jnp.ndarray = None, *,
deterministic: bool = True) -> jnp.ndarray:
if skip is not None:
x = jnp.concatenate([x, skip], axis=-1)
# convolution-in
x = Conv1x1(self.features, use_bias=self.use_bias)(x)
shortcut_long = x
for i in range(self.num_groups):
if self.use_global_mlp:
x = ResidualSplitHeadMultiAxisGmlpLayer(
grid_size=self.grid_size,
block_size=self.block_size,
grid_gmlp_factor=self.grid_gmlp_factor,
block_gmlp_factor=self.block_gmlp_factor,
input_proj_factor=self.input_proj_factor,
use_bias=self.use_bias,
dropout_rate=self.dropout_rate,
name=f"SplitHeadMultiAxisGmlpLayer_{i}")(x, deterministic)
x = RCAB(
features=self.features,
reduction=self.channels_reduction,
use_bias=self.use_bias,
name=f"channel_attention_block_1{i}")(x)
x = x + shortcut_long
if enc is not None and dec is not None:
assert self.use_cross_gating
x, _ = CrossGatingBlock(
features=self.features,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
input_proj_factor=self.input_proj_factor,
upsample_y=False,
use_bias=self.use_bias,
name="cross_gating_block")(
x, enc + dec, deterministic=deterministic)
if self.downsample:
x_down = Conv_down(self.features, use_bias=self.use_bias)(x)
return x_down, x
else:
return x
class UNetDecoderBlock(nn.Module):
"""Decoder block in MAXIM."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
num_groups: int = 1
lrelu_slope: float = 0.2
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
dropout_rate: float = 0.0
downsample: bool = True
use_global_mlp: bool = True
use_bias: bool = True
@nn.compact
def __call__(self, x: jnp.ndarray, bridge: jnp.ndarray = None,
deterministic: bool = True) -> jnp.ndarray:
x = ConvT_up(self.features, use_bias=self.use_bias)(x)
x = UNetEncoderBlock(
self.features,
num_groups=self.num_groups,
lrelu_slope=self.lrelu_slope,
block_size=self.block_size,
grid_size=self.grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
downsample=False,
use_bias=self.use_bias)(x, skip=bridge, deterministic=deterministic)
return x
class GetSpatialGatingWeights(nn.Module):
"""Get gating weights for cross-gating MLP block."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
input_proj_factor: int = 2
dropout_rate: float = 0.0
use_bias: bool = True
@nn.compact
def __call__(self, x, deterministic):
n, h, w, num_channels = x.shape
# input projection
x = nn.LayerNorm(name="LayerNorm_in")(x)
x = nn.Dense(
num_channels * self.input_proj_factor,
use_bias=self.use_bias,
name="in_project")(
x)
x = nn.gelu(x)
u, v = jnp.split(x, 2, axis=-1)
# Get grid MLP weights
gh, gw = self.grid_size
fh, fw = h // gh, w // gw
u = block_images_einops(u, patch_size=(fh, fw))
dim_u = u.shape[-3]
u = jnp.swapaxes(u, -1, -3)
u = nn.Dense(
dim_u, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2),
bias_init=nn.initializers.ones)(u)
u = jnp.swapaxes(u, -1, -3)
u = unblock_images_einops(u, grid_size=(gh, gw), patch_size=(fh, fw))
# Get Block MLP weights
fh, fw = self.block_size
gh, gw = h // fh, w // fw
v = block_images_einops(v, patch_size=(fh, fw))
dim_v = v.shape[-2]
v = jnp.swapaxes(v, -1, -2)
v = nn.Dense(
dim_v, use_bias=self.use_bias, kernel_init=nn.initializers.normal(2e-2),
bias_init=nn.initializers.ones)(v)
v = jnp.swapaxes(v, -1, -2)
v = unblock_images_einops(v, grid_size=(gh, gw), patch_size=(fh, fw))
x = jnp.concatenate([u, v], axis=-1)
x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic)
return x
class CrossGatingBlock(nn.Module):
"""Cross-gating MLP block."""
features: int
block_size: Sequence[int]
grid_size: Sequence[int]
dropout_rate: float = 0.0
input_proj_factor: int = 2
upsample_y: bool = True
use_bias: bool = True
@nn.compact
def __call__(self, x, y, deterministic=True):
# Upscale Y signal, y is the gating signal.
if self.upsample_y:
y = ConvT_up(self.features, use_bias=self.use_bias)(y)
x = Conv1x1(self.features, use_bias=self.use_bias)(x)
n, h, w, num_channels = x.shape
y = Conv1x1(num_channels, use_bias=self.use_bias)(y)
assert y.shape == x.shape
shortcut_x = x
shortcut_y = y
# Get gating weights from X
x = nn.LayerNorm(name="LayerNorm_x")(x)
x = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_x")(x)
x = nn.gelu(x)
gx = GetSpatialGatingWeights(
features=num_channels,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="SplitHeadMultiAxisGating_x")(
x, deterministic=deterministic)
# Get gating weights from Y
y = nn.LayerNorm(name="LayerNorm_y")(y)
y = nn.Dense(num_channels, use_bias=self.use_bias, name="in_project_y")(y)
y = nn.gelu(y)
gy = GetSpatialGatingWeights(
features=num_channels,
block_size=self.block_size,
grid_size=self.grid_size,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name="SplitHeadMultiAxisGating_y")(
y, deterministic=deterministic)
# Apply cross gating: X = X * GY, Y = Y * GX
y = y * gx
y = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_y")(y)
y = nn.Dropout(self.dropout_rate)(y, deterministic=deterministic)
y = y + shortcut_y
x = x * gy # gating x using y
x = nn.Dense(num_channels, use_bias=self.use_bias, name="out_project_x")(x)
x = nn.Dropout(self.dropout_rate)(x, deterministic=deterministic)
x = x + y + shortcut_x # get all aggregated signals
return x, y
class SAM(nn.Module):
"""Supervised attention module for multi-stage training.
Introduced by MPRNet [CVPR2021]: https://github.com/swz30/MPRNet
"""
features: int
output_channels: int = 3
use_bias: bool = True
@nn.compact
def __call__(self, x: jnp.ndarray, x_image: jnp.ndarray, *,
train: bool) -> Tuple[jnp.ndarray, jnp.ndarray]:
"""Apply the SAM module to the input and features.
Args:
x: the output features from UNet decoder with shape (h, w, c)
x_image: the input image with shape (h, w, 3)
train: Whether it is training
Returns:
A tuple of tensors (x1, image) where (x1) is the sam features used for the
next stage, and (image) is the output restored image at current stage.
"""
# Get features
x1 = Conv3x3(self.features, use_bias=self.use_bias)(x)
# Output restored image X_s
if self.output_channels == 3:
image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x) + x_image
else:
image = Conv3x3(self.output_channels, use_bias=self.use_bias)(x)
# Get attention maps for features
x2 = nn.sigmoid(Conv3x3(self.features, use_bias=self.use_bias)(image))
# Get attended feature maps
x1 = x1 * x2
# Residual connection
x1 = x1 + x
return x1, image
class MAXIM(nn.Module):
"""The MAXIM model function with multi-stage and multi-scale supervision.
For more model details, please check the CVPR paper:
MAXIM: MUlti-Axis MLP for Image Processing (https://arxiv.org/abs/2201.02973)
Attributes:
features: initial hidden dimension for the input resolution.
depth: the number of downsampling depth for the model.
num_stages: how many stages to use. It will also affects the output list.
num_groups: how many blocks each stage contains.
use_bias: whether to use bias in all the conv/mlp layers.
num_supervision_scales: the number of desired supervision scales.
lrelu_slope: the negative slope parameter in leaky_relu layers.
use_global_mlp: whether to use the multi-axis gated MLP block (MAB) in each
layer.
use_cross_gating: whether to use the cross-gating MLP block (CGB) in the
skip connections and multi-stage feature fusion layers.
high_res_stages: how many stages are specificied as high-res stages. The
rest (depth - high_res_stages) are called low_res_stages.
block_size_hr: the block_size parameter for high-res stages.
block_size_lr: the block_size parameter for low-res stages.
grid_size_hr: the grid_size parameter for high-res stages.
grid_size_lr: the grid_size parameter for low-res stages.
num_bottleneck_blocks: how many bottleneck blocks.
block_gmlp_factor: the input projection factor for block_gMLP layers.
grid_gmlp_factor: the input projection factor for grid_gMLP layers.
input_proj_factor: the input projection factor for the MAB block.
channels_reduction: the channel reduction factor for SE layer.
num_outputs: the output channels.
dropout_rate: Dropout rate.
Returns:
The output contains a list of arrays consisting of multi-stage multi-scale
outputs. For example, if num_stages = num_supervision_scales = 3 (the
model used in the paper), the output specs are: outputs =
[[output_stage1_scale1, output_stage1_scale2, output_stage1_scale3],
[output_stage2_scale1, output_stage2_scale2, output_stage2_scale3],
[output_stage3_scale1, output_stage3_scale2, output_stage3_scale3],]
The final output can be retrieved by outputs[-1][-1].
"""
features: int = 64
depth: int = 3
num_stages: int = 2
num_groups: int = 1
use_bias: bool = True
num_supervision_scales: int = 1
lrelu_slope: float = 0.2
use_global_mlp: bool = True
use_cross_gating: bool = True
high_res_stages: int = 2
block_size_hr: Sequence[int] = (16, 16)
block_size_lr: Sequence[int] = (8, 8)
grid_size_hr: Sequence[int] = (16, 16)
grid_size_lr: Sequence[int] = (8, 8)
num_bottleneck_blocks: int = 1
block_gmlp_factor: int = 2
grid_gmlp_factor: int = 2
input_proj_factor: int = 2
channels_reduction: int = 4
num_outputs: int = 3
dropout_rate: float = 0.0
@nn.compact
def __call__(self, x: jnp.ndarray, *, train: bool = False) -> Any:
n, h, w, c = x.shape # input image shape
shortcuts = []
shortcuts.append(x)
# Get multi-scale input images
for i in range(1, self.num_supervision_scales):
shortcuts.append(jax.image.resize(
x, shape=(n, h // (2**i), w // (2**i), c), method="nearest"))
# store outputs from all stages and all scales
# Eg, [[(64, 64, 3), (128, 128, 3), (256, 256, 3)], # Stage-1 outputs
# [(64, 64, 3), (128, 128, 3), (256, 256, 3)],] # Stage-2 outputs
outputs_all = []
sam_features, encs_prev, decs_prev = [], [], []
for idx_stage in range(self.num_stages):
# Input convolution, get multi-scale input features
x_scales = []
for i in range(self.num_supervision_scales):
x_scale = Conv3x3(
(2**i) * self.features,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_conv_{i}")(
shortcuts[i])
# If later stages, fuse input features with SAM features from prev stage
if idx_stage > 0:
# use larger blocksize at high-res stages
if self.use_cross_gating:
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
x_scale, _ = CrossGatingBlock(
features=(2**i) * self.features,
block_size=block_size,
grid_size=grid_size,
dropout_rate=self.dropout_rate,
input_proj_factor=self.input_proj_factor,
upsample_y=False,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_fuse_sam_{i}")(
x_scale, sam_features.pop(), deterministic=not train)
else:
x_scale = Conv1x1(
(2**i) * self.features,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_input_catconv_{i}")(
jnp.concatenate(
[x_scale, sam_features.pop()], axis=-1))
x_scales.append(x_scale)
# start encoder blocks
encs = []
x = x_scales[0] # First full-scale input feature
for i in range(self.depth): # 0, 1, 2
# use larger blocksize at high-res stages, vice versa.
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
use_cross_gating_layer = True if idx_stage > 0 else False
# Multi-scale input if multi-scale supervision
x_scale = x_scales[i] if i < self.num_supervision_scales else None
# UNet Encoder block
enc_prev = encs_prev.pop() if idx_stage > 0 else None
dec_prev = decs_prev.pop() if idx_stage > 0 else None
x, bridge = UNetEncoderBlock(
features=(2**i) * self.features,
num_groups=self.num_groups,
downsample=True,
lrelu_slope=self.lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
use_cross_gating=use_cross_gating_layer,
name=f"stage_{idx_stage}_encoder_block_{i}")(
x,
skip=x_scale,
enc=enc_prev,
dec=dec_prev,
deterministic=not train)
# Cache skip signals
encs.append(bridge)
# Global MLP bottleneck blocks
for i in range(self.num_bottleneck_blocks):
x = BottleneckBlock(
block_size=self.block_size_lr,
grid_size=self.block_size_lr,
features=(2**(self.depth - 1)) * self.features,
num_groups=self.num_groups,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
channels_reduction=self.channels_reduction,
name=f"stage_{idx_stage}_global_block_{i}")(
x, deterministic=not train)
# cache global feature for cross-gating
global_feature = x
# start cross gating. Use multi-scale feature fusion
skip_features = []
for i in reversed(range(self.depth)): # 2, 1, 0
# use larger blocksize at high-res stages
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
# get additional multi-scale signals
signal = jnp.concatenate([
UpSampleRatio(
(2**i) * self.features,
ratio=2**(j - i),
use_bias=self.use_bias)(enc) for j, enc in enumerate(encs)
],
axis=-1)
# Use cross-gating to cross modulate features
if self.use_cross_gating:
skips, global_feature = CrossGatingBlock(
features=(2**i) * self.features,
block_size=block_size,
grid_size=grid_size,
input_proj_factor=self.input_proj_factor,
dropout_rate=self.dropout_rate,
upsample_y=True,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_cross_gating_block_{i}")(
signal, global_feature, deterministic=not train)
else:
skips = Conv1x1(
(2**i) * self.features, use_bias=self.use_bias)(
signal)
skips = Conv3x3((2**i) * self.features, use_bias=self.use_bias)(skips)
skip_features.append(skips)
# start decoder. Multi-scale feature fusion of cross-gated features
outputs, decs, sam_features = [], [], []
for i in reversed(range(self.depth)):
# use larger blocksize at high-res stages
block_size = self.block_size_hr if i < self.high_res_stages else self.block_size_lr
grid_size = self.grid_size_hr if i < self.high_res_stages else self.block_size_lr
# get multi-scale skip signals from cross-gating block
signal = jnp.concatenate([
UpSampleRatio(
(2**i) * self.features,
ratio=2**(self.depth - j - 1 - i),
use_bias=self.use_bias)(skip)
for j, skip in enumerate(skip_features)
],
axis=-1)
# Decoder block
x = UNetDecoderBlock(
features=(2**i) * self.features,
num_groups=self.num_groups,
lrelu_slope=self.lrelu_slope,
block_size=block_size,
grid_size=grid_size,
block_gmlp_factor=self.block_gmlp_factor,
grid_gmlp_factor=self.grid_gmlp_factor,
input_proj_factor=self.input_proj_factor,
channels_reduction=self.channels_reduction,
use_global_mlp=self.use_global_mlp,
dropout_rate=self.dropout_rate,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_decoder_block_{i}")(
x, bridge=signal, deterministic=not train)
# Cache decoder features for later-stage's usage
decs.append(x)
# output conv, if not final stage, use supervised-attention-block.
if i < self.num_supervision_scales:
if idx_stage < self.num_stages - 1: # not last stage, apply SAM
sam, output = SAM(
(2**i) * self.features,
output_channels=self.num_outputs,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_supervised_attention_module_{i}")(
x, shortcuts[i], train=train)
outputs.append(output)
sam_features.append(sam)
else: # Last stage, apply output convolutions
output = Conv3x3(self.num_outputs,
use_bias=self.use_bias,
name=f"stage_{idx_stage}_output_conv_{i}")(x)
output = output + shortcuts[i]
outputs.append(output)
# Cache encoder and decoder features for later-stage's usage
encs_prev = encs[::-1]
decs_prev = decs
# Store outputs
outputs_all.append(outputs)
return outputs_all
def Model(*, variant=None, **kw):
"""Factory function to easily create a Model variant like "S".
Every model file should have this Model() function that returns the flax
model function. The function name should be fixed.
Args:
variant: UNet model variants. Options: 'S-1' | 'S-2' | 'S-3'
| 'M-1' | 'M-2' | 'M-3'
**kw: Other UNet config dicts.
Returns:
The MAXIM() model function
"""
if variant is not None:
config = {
# params: 6.108515000000001 M, GFLOPS: 93.163716608
"S-1": {
"features": 32,
"depth": 3,
"num_stages": 1,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 13.35383 M, GFLOPS: 206.743273472
"S-2": {
"features": 32,
"depth": 3,
"num_stages": 2,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 20.599145 M, GFLOPS: 320.32194560000005
"S-3": {
"features": 32,
"depth": 3,
"num_stages": 3,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 19.361219000000002 M, 308.495712256 GFLOPs
"M-1": {
"features": 64,
"depth": 3,
"num_stages": 1,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 40.83911 M, 675.25541888 GFLOPs
"M-2": {
"features": 64,
"depth": 3,
"num_stages": 2,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
# params: 62.317001 M, 1042.014666752 GFLOPs
"M-3": {
"features": 64,
"depth": 3,
"num_stages": 3,
"num_groups": 2,
"num_bottleneck_blocks": 2,
"block_gmlp_factor": 2,
"grid_gmlp_factor": 2,
"input_proj_factor": 2,
"channels_reduction": 4,
},
}[variant]
for k, v in config.items():
kw.setdefault(k, v)
return MAXIM(**kw)
|