File size: 5,385 Bytes
f69d33f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# Copyright 2022 Google LLC.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
os.environ["XLA_FLAGS"] = "--xla_gpu_force_compilation_parallelism=1"

import subprocess
subprocess.call(["pip", "install", "."])

import numpy as np
from PIL import Image
import importlib
import ml_collections
import tempfile
import jax.numpy as jnp
import flax
from cog import BasePredictor, Path, Input, BaseModel

from maxim.run_eval import (
    _MODEL_FILENAME,
    _MODEL_VARIANT_DICT,
    _MODEL_CONFIGS,
    get_params,
    mod_padding_symmetric,
    make_shape_even,
    augment_image,
)


class Predictor(BasePredictor):
    def setup(self):

        self.params = {
            "Image Denoising": get_params("checkpoints/denoising-SIDD/checkpoint.npz"),
            "Image Deblurring (GoPro)": get_params(
                "checkpoints/debluring-GoPro/checkpoint.npz"
            ),
            "Image Deblurring (REDS)": get_params(
                "checkpoints/debluring-REDS/checkpoint.npz"
            ),
            "Image Deblurring (RealBlur_R)": get_params(
                "checkpoints/debluring-Real-Blur-R/checkpoint.npz"
            ),
            "Image Deblurring (RealBlur_J)": get_params(
                "checkpoints/debluring-Real-Blur-J/checkpoint.npz"
            ),
            "Image Deraining (Rain streak)": get_params(
                "checkpoints/deraining-Rain13k/checkpoint.npz"
            ),
            "Image Deraining (Rain drop)": get_params(
                "checkpoints/deraining-Raindrop/checkpoint.npz"
            ),
            "Image Dehazing (Indoor)": get_params(
                "checkpoints/dehazing-RESIDE-Indoor/checkpoint.npz"
            ),
            "Image Dehazing (Outdoor)": get_params(
                "checkpoints/dehazing-RESIDE-Outdoor/checkpoint.npz"
            ),
            "Image Enhancement (Low-light)": get_params(
                "checkpoints/enhancement-LOL/checkpoint.npz"
            ),
            "Image Enhancement (Retouching)": get_params(
                "checkpoints/enhancement-FiveK/checkpoint.npz"
            ),
        }

        model_mod = importlib.import_module(f"maxim.models.{_MODEL_FILENAME}")
        self.models = {}
        for task in _MODEL_VARIANT_DICT.keys():
            model_configs = ml_collections.ConfigDict(_MODEL_CONFIGS)
            model_configs.variant = _MODEL_VARIANT_DICT[task]
            self.models[task] = model_mod.Model(**model_configs)

    def predict(

        self,

        model: str = Input(

            choices=[

                "Image Denoising",

                "Image Deblurring (GoPro)",

                "Image Deblurring (REDS)",

                "Image Deblurring (RealBlur_R)",

                "Image Deblurring (RealBlur_J)",

                "Image Deraining (Rain streak)",

                "Image Deraining (Rain drop)",

                "Image Dehazing (Indoor)",

                "Image Dehazing (Outdoor)",

                "Image Enhancement (Low-light)",

                "Image Enhancement (Retouching)",

            ],

            description="Choose a model.",

        ),

        image: Path = Input(

            description="Input image.",

        ),

    ) -> Path:

        params = self.params[model]
        task = model.split()[1]
        model = self.models[task]

        input_img = (
            np.asarray(Image.open(str(image)).convert("RGB"), np.float32) / 255.0
        )

        # Padding images to have even shapes
        height, width = input_img.shape[0], input_img.shape[1]
        input_img = make_shape_even(input_img)
        height_even, width_even = input_img.shape[0], input_img.shape[1]

        # padding images to be multiplies of 64
        input_img = mod_padding_symmetric(input_img, factor=64)
        input_img = np.expand_dims(input_img, axis=0)

        # handle multi-stage outputs, obtain the last scale output of last stage
        preds = model.apply({"params": flax.core.freeze(params)}, input_img)
        if isinstance(preds, list):
            preds = preds[-1]
            if isinstance(preds, list):
                preds = preds[-1]

        preds = np.array(preds[0], np.float32)

        # unpad images to get the original resolution
        new_height, new_width = preds.shape[0], preds.shape[1]
        h_start = new_height // 2 - height_even // 2
        h_end = h_start + height
        w_start = new_width // 2 - width_even // 2
        w_end = w_start + width
        preds = preds[h_start:h_end, w_start:w_end, :]

        # save files
        out_path = Path(tempfile.mkdtemp()) / "output.png"
        Image.fromarray(
            np.array((np.clip(preds, 0.0, 1.0) * 255.0).astype(jnp.uint8))
        ).save(str(out_path))

        return out_path