Spaces:
Sleeping
Sleeping
File size: 2,536 Bytes
fba61a7 c706fe8 e29b955 c706fe8 3cbd301 c706fe8 e29b955 c706fe8 e29b955 e418188 c706fe8 e418188 c706fe8 e29b955 c706fe8 e29b955 c706fe8 e29b955 c706fe8 e29b955 c706fe8 5373d2a c706fe8 e418188 c706fe8 e29b955 c706fe8 e29b955 c706fe8 e29b955 c706fe8 e418188 e29b955 c706fe8 e29b955 c706fe8 075d061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
title: Hubermanbot2
emoji: π
colorFrom: blue
colorTo: blue
sdk: gradio
sdk_version: 5.16.0
app_file: app.py
pinned: false
license: mit
short_description: a bot
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
# Andrew Huberman RAG-Based AI Chatbot
## Overview
Xyzbot is an AI chatbot that extracts and synthesizes insights from Andrew Huberman's YouTube videos. It automatically retrieves video transcripts, updates its knowledge base in ChromaDB, and provides citation-linked responses.
## π Key Features
- Mimics Andrew Huberman's insights using YouTube video transcripts
- Automatic transcript retrieval and knowledge base updates
- RAG-powered response generation with direct video citations
- Interactive Streamlit user interface
- Docker-based deployment for easy scalability
## π Tech Stack
- Backend: Python, LangChain, OpenAI API
- Frontend: Streamlit
- Database: ChromaDB
- Deployment: Docker
## π Project Structure
```
π¦ Xyzbot
βββ π Data
βββ π Example
βββ π Llm
βββ π Notebook
βββ π Prompts
βββ π Rag
β βββ chromadb.db
β βββ π Processed_folder
βββ π utils
βββ Dockerfile
βββ pyproject.toml
```
## π§ Prerequisites
- Python 3.8+
- Docker (optional)
## π API Keys Required
1. Google Gemini API Key
2. YouTube API Key
## π Installation
### Local Setup
1. Clone the repository
```bash
git clone https://github.com/Angel-dash/Xyzbot.git
cd Xyzbot
```
2. Create virtual environment
```bash
python3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
```
### Docker Setup
#### Option 1: Build Locally
```bash
docker build -t xyzbot:v1.0 .
docker run -it \
-v $(pwd)/Rag:/app/Rag:rw \
-e GOOGLE_API_KEY=your_api_key \
xyzbot:v1.0
```
#### Option 2: Pull from Docker Hub
```bash
docker pull angeldash/xyzbot:v1.0
docker run -it \
-v $(pwd)/Rag:/app/Rag:rw \
-e GOOGLE_API_KEY=your_api_key \
angeldash/xyzbot:v1.0
```
## π₯οΈ Running the Application
```bash
streamlit run src/main.py
```
## π Future Roadmap
- Fine-tuned LLM response generation
- Real-time multi-channel monitoring
- Enhanced citation formatting
- AI agent conversation handling
- Performance optimization
## π License
MIT License
## π€ Contributing
Contributions are welcome! Open an issue or submit a pull request.
---
**Author:** Angel Dash | **GitHub:** [@Angel-dash](https://github.com/Angel-dash)
|