File size: 5,790 Bytes
b9981a2
 
 
 
 
3140fad
 
 
 
abf817a
b9981a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12b61f
 
63886bd
71e0395
f12b61f
63886bd
 
f12b61f
63886bd
 
 
b9981a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12b61f
b9981a2
1fe9554
b9981a2
 
f12b61f
 
 
 
b9981a2
f12b61f
 
9aee68a
f12b61f
 
 
b9981a2
f12b61f
b9981a2
 
 
 
f12b61f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import chromadb
from typing import List, Dict
import sys
from pathlib import Path
from sentence_transformers import SentenceTransformer


embedding_model = SentenceTransformer('all-MiniLM-L6-v2')

project_root = Path(__file__).resolve().parent
sys.path.append(str(project_root))
sys.path.append(str(project_root / "Rag"))
sys.path.append(str(project_root / "Data"))
sys.path.append(str(project_root / "Data" / "transcripts"))
sys.path.append(str(project_root / "Data" / "video_links"))
sys.path.append(str(project_root / "Llm"))
sys.path.append(str(project_root / "Prompts"))
sys.path.append(str(project_root / "utils"))
from Rag.rag_pipeline import (
    query_database,
    generate_response,
    enhance_query_with_history,
    update_conversation_history,
    process_and_add_new_files
)

INTRODUCTION = """
# 🧠 Welcome to HubermanBot!

I am your AI assistant trained on Andrew Huberman's podcast content. My knowledge base includes detailed information about:

- 🎯 Peak Performance & Focus
- 😴 Sleep Science & Optimization
- πŸ‹οΈ Physical Fitness & Recovery
- 🧘 Mental Health & Stress Management
- πŸ§ͺ Neuroscience & Biology
- πŸ’ͺ Habit Formation & Behavior Change

For each response, I'll provide:
- Detailed answers based on podcast content
- Direct source links to specific episodes
- Scientific context when available

Ask me anything about these topics, and I'll help you find relevant information from the Huberman Lab Podcast!

Example questions you might ask:
- "What does Dr. Huberman recommend for better sleep?"
- "How can I improve my focus and concentration?"
- "What are the best practices for morning routines?"
"""

def initialize_chroma_client(rag_path: Path):
    print(f"Initializing ChromaDB at: {rag_path}")
    client = chromadb.PersistentClient(path=str(rag_path))
    print(f"Available collections: {client.list_collections()}")
    try:
        collection = client.get_collection(name="yt_transcript_collection")
        print(f"Found existing collection with {len(collection.get()['ids'])} documents")
    except Exception as e:
        print(f"No existing collection found, creating new one: {str(e)}")
        collection = client.create_collection(name="yt_transcript_collection")
    return collection

def format_youtube_url(filename: str) -> str:
    """Convert filename to YouTube URL"""
    video_id = filename.split('_')[0]
    return f"https://www.youtube.com/watch?v={video_id}"

class RAGChatInterface:
    def __init__(self, transcripts_folder_path: str, collection):
        self.transcripts_folder_path = transcripts_folder_path
        self.collection = collection
        self.conversation_history: List[Dict[str, str]] = []

    def process_query(self, message: str, history: List[List[str]]) -> str:
        """Process a single query and return the response"""
        self.conversation_history = [
            {"user": user_msg, "bot": bot_msg}
            for user_msg, bot_msg in history
        ]

        query_with_history = enhance_query_with_history(message, self.conversation_history)
        retrieved_docs, metadatas = query_database(self.collection, query_with_history)

        if not retrieved_docs:
            return "I apologize, but I couldn't find any relevant information about that in my knowledge base. Could you try rephrasing your question or ask about a different topic covered in the Huberman Lab Podcast?"

        source_links = [meta["source"] for meta in metadatas]
        response = generate_response(
            self.conversation_history,
            message,
            retrieved_docs,
            source_links
        )

        unique_sources = list(set(source_links))
        youtube_urls = [format_youtube_url(source) for source in unique_sources]

        formatted_response = f"{response}\n\n---\nπŸ“š **Source Episodes:**\n"
        for url in youtube_urls:
            formatted_response += f"- {url}\n"

        return formatted_response

def create_interface(transcripts_folder_path: str, collection) -> gr.Interface:
    """Create and configure the Gradio interface"""
    rag_chat = RAGChatInterface(transcripts_folder_path, collection)

    interface = gr.ChatInterface(
        fn=rag_chat.process_query,
        title="🧠 HubermanBot - Your Neuroscience & Wellness AI Assistant",
        description=INTRODUCTION,
        examples=[
            "What are Dr. Huberman's top recommendations for better sleep?",
            "How does sunlight exposure affect our circadian rhythm?",
            "What supplements does Dr. Huberman recommend for focus?",
            "What are the best practices for morning routines according to Dr. Huberman?",
            "How can I optimize my workout recovery based on neuroscience?",
        ],
        theme=gr.themes.Soft(
            primary_hue="indigo",
            secondary_hue="blue",
        )
    )

    return interface

def main():
    # Get paths using pathlib
    project_root = Path(__file__).parent
    rag_path = project_root / "Rag" / "chromadb.db"  
    transcripts_folder_path = project_root / "Data" / "transcripts"

    # Initialize ChromaDB with proper error handling
    print("Starting ChromaDB initialization...")
    collection = initialize_chroma_client(rag_path)
    print("ChromaDB initialization complete")

    # Process any new files
    print("Checking for new files...")
    new_files_added = process_and_add_new_files(str(transcripts_folder_path), collection)
    if not new_files_added:
        print("No new files to process")
    
    # Create and launch the interface
    print("Launching Gradio interface...")
    interface = create_interface(str(transcripts_folder_path), collection)
    interface.launch(share=True, server_port=7860)

if __name__ == "__main__":
    main()