Spaces:
Sleeping
Sleeping
Commit
·
66f97de
1
Parent(s):
880d7b6
resolve rag/db
Browse files- .gitignore +0 -1
- Llm/llm_endpoints.py +14 -0
- Rag/chunking.py +54 -6
.gitignore
CHANGED
@@ -250,5 +250,4 @@ flowcess/commons/settings.py
|
|
250 |
Rag/db
|
251 |
*.db
|
252 |
Rag/chromadb.db/chroma.sqlite3
|
253 |
-
Rag/chromadb.db/chroma.sqlite3
|
254 |
Rag/db/*
|
|
|
250 |
Rag/db
|
251 |
*.db
|
252 |
Rag/chromadb.db/chroma.sqlite3
|
|
|
253 |
Rag/db/*
|
Llm/llm_endpoints.py
CHANGED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import os
|
3 |
+
import google.generativeai as genai
|
4 |
+
|
5 |
+
|
6 |
+
# Configure the Generative AI model with the API key from the environment
|
7 |
+
load_dotenv()
|
8 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
|
9 |
+
gemini_model = genai.GenerativeModel("models/gemini-1.5-flash")
|
10 |
+
|
11 |
+
# Function to get a response from the generative model
|
12 |
+
def get_llm_response(prompt: str) -> str:
|
13 |
+
response = gemini_model.generate_content(prompt)
|
14 |
+
return response.text
|
Rag/chunking.py
CHANGED
@@ -1,10 +1,58 @@
|
|
1 |
import chromadb
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
-
|
4 |
-
from
|
5 |
-
|
6 |
import os
|
7 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
import logging
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import chromadb
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
+
from langchain.chains import ConversationalRetrievalChain
|
4 |
+
from langchain_community.document_loaders import TextLoader
|
5 |
+
from langchain.schema import Document
|
6 |
import os
|
7 |
+
import sys
|
8 |
+
from Data.yt_transcript import all_video_transcript_pipeline
|
9 |
+
import google.generativeai as genai
|
10 |
+
|
11 |
+
PROJECT_ROOT = os.path.abspath(os.path.dirname(os.path.abspath(__file__)))
|
12 |
+
sys.path.append(PROJECT_ROOT)
|
13 |
+
API_KEY = os.getenv("GOOGLE_API_KEY")
|
14 |
+
if API_KEY:
|
15 |
+
genai.configure(api_key=API_KEY)
|
16 |
+
full_transcripts = all_video_transcript_pipeline()
|
17 |
+
loader = TextLoader(full_transcripts)
|
18 |
+
|
19 |
import logging
|
20 |
+
|
21 |
+
logging.basicConfig(level=logging.INFO)
|
22 |
+
|
23 |
+
|
24 |
+
def prepare_documents(full_transcript):
|
25 |
+
docs = []
|
26 |
+
for key, value in full_transcript.items():
|
27 |
+
if isinstance(value, dict) and "text" in value:
|
28 |
+
content = " ".join(value["text"]) if isinstance(value["text"], list) else value["text"]
|
29 |
+
docs.append(Document(page_content=content, metadata={"source": key}))
|
30 |
+
return docs
|
31 |
+
|
32 |
+
|
33 |
+
def split_text_to_chunks():
|
34 |
+
try:
|
35 |
+
docs = prepare_documents(full_transcripts)
|
36 |
+
logging.info(f"{len(docs)} documents prepared")
|
37 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
38 |
+
chunk_size=1000,
|
39 |
+
chunk_overlap=200,
|
40 |
+
separators=['\n\n', '.', '?', '!'])
|
41 |
+
splits = text_splitter.split_documents(docs)
|
42 |
+
return splits
|
43 |
+
except Exception as e:
|
44 |
+
logging.error(f"Error while splitting text: {str(e)}")
|
45 |
+
# Optionally log the full traceback to a file
|
46 |
+
import traceback
|
47 |
+
with open("error_log.txt", "w") as f:
|
48 |
+
traceback.print_exc(file=f)
|
49 |
+
return None
|
50 |
+
|
51 |
+
|
52 |
+
all_splits = split_text_to_chunks()
|
53 |
+
if all_splits:
|
54 |
+
print(f"Total chunks created: {len(all_splits)}")
|
55 |
+
print(all_splits[0].metadata)
|
56 |
+
print(all_splits[1])
|
57 |
+
else:
|
58 |
+
print("Splitting failed. Check logs for details.")
|