from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import ConversationalRetrievalChain from langchain_community.document_loaders import TextLoader from langchain.schema import Document import os import sys from Data.yt_transcript import all_video_transcript_pipeline import google.generativeai as genai PROJECT_ROOT = os.path.abspath(os.path.dirname(os.path.abspath(__file__))) sys.path.append(PROJECT_ROOT) API_KEY = os.getenv("GOOGLE_API_KEY") if API_KEY: genai.configure(api_key=API_KEY) full_transcripts = all_video_transcript_pipeline() loader = TextLoader(full_transcripts) import logging logging.basicConfig(level=logging.INFO) def prepare_documents(full_transcript): docs = [] for key, value in full_transcript.items(): if isinstance(value, dict) and "text" in value: content = " ".join(value["text"]) if isinstance(value["text"], list) else value["text"] docs.append(Document(page_content=content, metadata={"source": key})) return docs def split_text_to_chunks(): try: docs = prepare_documents(full_transcripts) logging.info(f"{len(docs)} documents prepared") text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, separators=['\n\n', '.', '?', '!']) splits = text_splitter.split_documents(docs) return splits except Exception as e: logging.error(f"Error while splitting text: {str(e)}") # Optionally log the full traceback to a file import traceback with open("error_log.txt", "w") as f: traceback.print_exc(file=f) return None all_splits = split_text_to_chunks() if all_splits: print(f"Total chunks created: {len(all_splits)}") print(all_splits[0].metadata) print(all_splits[1]) else: print("Splitting failed. Check logs for details.")