import gradio as gr import chromadb from typing import List, Dict import sys from pathlib import Path project_root = Path(__file__).resolve().parent.parent sys.path.append(str(project_root)) sys.path.append(str(project_root / "Rag")) sys.path.append(str(project_root / "Data")) sys.path.append(str(project_root / "Data" / "transcripts")) sys.path.append(str(project_root / "Data" / "video_links")) sys.path.append(str(project_root / "Llm")) sys.path.append(str(project_root / "Prompts")) sys.path.append(str(project_root / "utils")) from Rag.rag_pipeline import ( query_database, generate_response, enhance_query_with_history, update_conversation_history, process_and_add_new_files ) INTRODUCTION = """ # ๐Ÿง  Welcome to HubermanBot! I am your AI assistant trained on Andrew Huberman's podcast content. My knowledge base includes detailed information about: - ๐ŸŽฏ Peak Performance & Focus - ๐Ÿ˜ด Sleep Science & Optimization - ๐Ÿ‹๏ธ Physical Fitness & Recovery - ๐Ÿง˜ Mental Health & Stress Management - ๐Ÿงช Neuroscience & Biology - ๐Ÿ’ช Habit Formation & Behavior Change For each response, I'll provide: - Detailed answers based on podcast content - Direct source links to specific episodes - Scientific context when available Ask me anything about these topics, and I'll help you find relevant information from the Huberman Lab Podcast! Example questions you might ask: - "What does Dr. Huberman recommend for better sleep?" - "How can I improve my focus and concentration?" - "What are the best practices for morning routines?" """ def format_youtube_url(filename: str) -> str: """Convert filename to YouTube URL""" # Extract video ID by removing the timestamp and .txt extension video_id = filename.split('_')[0] return f"https://www.youtube.com/watch?v={video_id}" class RAGChatInterface: def __init__(self, transcripts_folder_path: str, collection): self.transcripts_folder_path = transcripts_folder_path self.collection = collection self.conversation_history: List[Dict[str, str]] = [] def process_query(self, message: str, history: List[List[str]]) -> str: """Process a single query and return the response""" # Convert Gradio history format to our conversation history format self.conversation_history = [ {"user": user_msg, "bot": bot_msg} for user_msg, bot_msg in history ] # Enhance query with conversation history query_with_history = enhance_query_with_history(message, self.conversation_history) # Get relevant documents retrieved_docs, metadatas = query_database(self.collection, query_with_history) if not retrieved_docs: return "I apologize, but I couldn't find any relevant information about that in my knowledge base. Could you try rephrasing your question or ask about a different topic covered in the Huberman Lab Podcast?" # Generate response source_links = [meta["source"] for meta in metadatas] response = generate_response( self.conversation_history, message, retrieved_docs, source_links ) # Remove duplicate sources and convert to YouTube URLs unique_sources = list(set(source_links)) youtube_urls = [format_youtube_url(source) for source in unique_sources] # Format response with markdown for better readability formatted_response = f"{response}\n\n---\n๐Ÿ“š **Source Episodes:**\n" for url in youtube_urls: formatted_response += f"- {url}\n" return formatted_response def create_interface(transcripts_folder_path: str, collection) -> gr.Interface: """Create and configure the Gradio interface""" # Initialize the RAG chat interface rag_chat = RAGChatInterface(transcripts_folder_path, collection) # Create the Gradio interface with custom styling interface = gr.ChatInterface( fn=rag_chat.process_query, title="๐Ÿง  HubermanBot - Your Neuroscience & Wellness AI Assistant", description=INTRODUCTION, examples=[ "What are Dr. Huberman's top recommendations for better sleep?", "How does sunlight exposure affect our circadian rhythm?", "What supplements does Dr. Huberman recommend for focus?", "What are the best practices for morning routines according to Dr. Huberman?", "How can I optimize my workout recovery based on neuroscience?", ], theme=gr.themes.Soft( primary_hue="indigo", secondary_hue="blue", ) ) return interface def main(): # Get absolute path for ChromaDB project_root = Path(__file__).parent.parent chromadb_path = project_root / "Rag" / "chromadb.db" client = chromadb.PersistentClient(path=str(chromadb_path)) collection = client.get_or_create_collection(name="yt_transcript_collection") # Use absolute path for transcripts folder too transcripts_folder_path = project_root / "Data" / "transcripts" # Process any new files process_and_add_new_files(str(transcripts_folder_path), collection) # Create and launch the interface interface = create_interface(str(transcripts_folder_path), collection) interface.launch(share=True, server_port=7860) if __name__ == "__main__": main()