import gradio as gr import chromadb from typing import List, Dict import sys from pathlib import Path from sentence_transformers import SentenceTransformer embedding_model = SentenceTransformer('all-MiniLM-L6-v2') project_root = Path(__file__).resolve().parent sys.path.append(str(project_root)) sys.path.append(str(project_root / "Rag")) sys.path.append(str(project_root / "Data")) sys.path.append(str(project_root / "Data" / "transcripts")) sys.path.append(str(project_root / "Data" / "video_links")) sys.path.append(str(project_root / "Llm")) sys.path.append(str(project_root / "Prompts")) sys.path.append(str(project_root / "utils")) from Rag.rag_pipeline import ( query_database, generate_response, enhance_query_with_history, update_conversation_history, process_and_add_new_files ) INTRODUCTION = """ # ๐Ÿง  Welcome to HubermanBot! I am your AI assistant trained on Andrew Huberman's podcast content. My knowledge base includes detailed information about: - ๐ŸŽฏ Peak Performance & Focus - ๐Ÿ˜ด Sleep Science & Optimization - ๐Ÿ‹๏ธ Physical Fitness & Recovery - ๐Ÿง˜ Mental Health & Stress Management - ๐Ÿงช Neuroscience & Biology - ๐Ÿ’ช Habit Formation & Behavior Change For each response, I'll provide: - Detailed answers based on podcast content - Direct source links to specific episodes - Scientific context when available Ask me anything about these topics, and I'll help you find relevant information from the Huberman Lab Podcast! Example questions you might ask: - "What does Dr. Huberman recommend for better sleep?" - "How can I improve my focus and concentration?" - "What are the best practices for morning routines?" """ def initialize_chroma_client(rag_path: Path): print(f"Initializing ChromaDB at: {rag_path}") client = chromadb.PersistentClient(path=str(rag_path)) print(f"Available collections: {client.list_collections()}") try: collection = client.get_collection(name="yt_transcript_collection") print(f"Found existing collection with {len(collection.get()['ids'])} documents") except Exception as e: print(f"No existing collection found, creating new one: {str(e)}") collection = client.create_collection(name="yt_transcript_collection") return collection def format_youtube_url(filename: str) -> str: """Convert filename to YouTube URL""" video_id = filename.split('_')[0] return f"https://www.youtube.com/watch?v={video_id}" class RAGChatInterface: def __init__(self, transcripts_folder_path: str, collection): self.transcripts_folder_path = transcripts_folder_path self.collection = collection self.conversation_history: List[Dict[str, str]] = [] def process_query(self, message: str, history: List[List[str]]) -> str: """Process a single query and return the response""" self.conversation_history = [ {"user": user_msg, "bot": bot_msg} for user_msg, bot_msg in history ] query_with_history = enhance_query_with_history(message, self.conversation_history) retrieved_docs, metadatas = query_database(self.collection, query_with_history) if not retrieved_docs: return "I apologize, but I couldn't find any relevant information about that in my knowledge base. Could you try rephrasing your question or ask about a different topic covered in the Huberman Lab Podcast?" source_links = [meta["source"] for meta in metadatas] response = generate_response( self.conversation_history, message, retrieved_docs, source_links ) unique_sources = list(set(source_links)) youtube_urls = [format_youtube_url(source) for source in unique_sources] formatted_response = f"{response}\n\n---\n๐Ÿ“š **Source Episodes:**\n" for url in youtube_urls: formatted_response += f"- {url}\n" return formatted_response def create_interface(transcripts_folder_path: str, collection) -> gr.Interface: """Create and configure the Gradio interface""" rag_chat = RAGChatInterface(transcripts_folder_path, collection) interface = gr.ChatInterface( fn=rag_chat.process_query, title="๐Ÿง  HubermanBot - Your Neuroscience & Wellness AI Assistant", description=INTRODUCTION, examples=[ "What are Dr. Huberman's top recommendations for better sleep?", "How does sunlight exposure affect our circadian rhythm?", "What supplements does Dr. Huberman recommend for focus?", "What are the best practices for morning routines according to Dr. Huberman?", "How can I optimize my workout recovery based on neuroscience?", ], theme=gr.themes.Soft( primary_hue="indigo", secondary_hue="blue", ) ) return interface def main(): # Get paths using pathlib project_root = Path(__file__).parent rag_path = project_root / "Rag" / "chromadb.db" transcripts_folder_path = project_root / "Data" / "transcripts" # Initialize ChromaDB with proper error handling print("Starting ChromaDB initialization...") collection = initialize_chroma_client(rag_path) print("ChromaDB initialization complete") # Process any new files print("Checking for new files...") new_files_added = process_and_add_new_files(str(transcripts_folder_path), collection) if not new_files_added: print("No new files to process") # Create and launch the interface print("Launching Gradio interface...") interface = create_interface(str(transcripts_folder_path), collection) interface.launch(share=True, server_port=7860) if __name__ == "__main__": main()