Facefusion / facefusion /content_analyser.py
Nikhil-4brains's picture
Upload 174 files
b99ca3e verified
from functools import lru_cache
from typing import List
import numpy
from tqdm import tqdm
from facefusion import inference_manager, state_manager, wording
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.types import Detection, DownloadScope, Fps, InferencePool, ModelOptions, ModelSet, Score, VisionFrame
from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame
STREAM_COUNTER = 0
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'yolo_nsfw':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.2.0', 'yolo_11m_nsfw.hash'),
'path': resolve_relative_path('../.assets/models/yolo_11m_nsfw.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.2.0', 'yolo_11m_nsfw.onnx'),
'path': resolve_relative_path('../.assets/models/yolo_11m_nsfw.onnx')
}
},
'size': (640, 640)
}
}
def get_inference_pool() -> InferencePool:
model_names = [ 'yolo_nsfw' ]
model_source_set = get_model_options().get('sources')
return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
def clear_inference_pool() -> None:
model_names = [ 'yolo_nsfw' ]
inference_manager.clear_inference_pool(__name__, model_names)
def get_model_options() -> ModelOptions:
return create_static_model_set('full').get('yolo_nsfw')
def pre_check() -> bool:
model_hash_set = get_model_options().get('hashes')
model_source_set = get_model_options().get('sources')
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
global STREAM_COUNTER
STREAM_COUNTER = STREAM_COUNTER + 1
if STREAM_COUNTER % int(video_fps) == 0:
return analyse_frame(vision_frame)
return False
def analyse_frame(vision_frame : VisionFrame) -> bool:
nsfw_scores = detect_nsfw(vision_frame)
return len(nsfw_scores) > 0
@lru_cache(maxsize = None)
def analyse_image(image_path : str) -> bool:
vision_frame = read_image(image_path)
return analyse_frame(vision_frame)
@lru_cache(maxsize = None)
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
video_fps = detect_video_fps(video_path)
frame_range = range(trim_frame_start, trim_frame_end)
rate = 0.0
total = 0
counter = 0
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
for frame_number in frame_range:
if frame_number % int(video_fps) == 0:
vision_frame = read_video_frame(video_path, frame_number)
total += 1
if analyse_frame(vision_frame):
counter += 1
if counter > 0 and total > 0:
rate = counter / total * 100
progress.set_postfix(rate = rate)
progress.update()
return rate > 10.0
def detect_nsfw(vision_frame : VisionFrame) -> List[Score]:
nsfw_scores = []
model_size = get_model_options().get('size')
temp_vision_frame = fit_frame(vision_frame, model_size)
detect_vision_frame = prepare_detect_frame(temp_vision_frame)
detection = forward(detect_vision_frame)
detection = numpy.squeeze(detection).T
nsfw_scores_raw = numpy.amax(detection[:, 4:], axis = 1)
keep_indices = numpy.where(nsfw_scores_raw > 0.2)[0]
if numpy.any(keep_indices):
nsfw_scores_raw = nsfw_scores_raw[keep_indices]
nsfw_scores = nsfw_scores_raw.ravel().tolist()
return nsfw_scores
def forward(vision_frame : VisionFrame) -> Detection:
content_analyser = get_inference_pool().get('content_analyser')
with conditional_thread_semaphore():
detection = content_analyser.run(None,
{
'input': vision_frame
})
return detection
def prepare_detect_frame(temp_vision_frame : VisionFrame) -> VisionFrame:
detect_vision_frame = temp_vision_frame / 255.0
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return detect_vision_frame