Spaces:
Running
Running
File size: 15,944 Bytes
a47b6e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 |
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('Agg') # Use non-interactive backend
import matplotlib.pyplot as plt
import seaborn as sns
import os
import joblib
from src.models.loan_recovery_model import LoanRecoveryModel
from src.utils.data_generator import generate_loan_data
from src.preprocessing.data_processor import LoanDataProcessor
# Set page configuration
st.set_page_config(
page_title="Smart Loan Recovery System",
page_icon="💰",
layout="wide",
initial_sidebar_state="expanded"
)
# Define functions
@st.cache_data
def load_sample_data():
"""Load or generate sample data."""
data_path = "data/loan_data.csv"
if os.path.exists(data_path):
return pd.read_csv(data_path)
else:
data = generate_loan_data(n_samples=1000)
os.makedirs("data", exist_ok=True)
data.to_csv(data_path, index=False)
return data
@st.cache_resource
def load_model(model_type="random_forest"):
"""Load the trained model."""
model_path = f"models/loan_recovery_{model_type}.pkl"
# Check if model exists, if not train it
if not os.path.exists(model_path):
st.info(f"Model not found. Training a new {model_type} model...")
from src.train_model import train_and_save_model
train_and_save_model(model_type=model_type)
return LoanRecoveryModel.load_model(model_path)
def predict_recovery(model, data):
"""Make predictions using the model."""
recovery_probs = model.predict(data)
return recovery_probs
def plot_recovery_distribution(data):
"""Plot the distribution of recovery status."""
fig, ax = plt.subplots(figsize=(10, 6))
recovery_counts = data['recovery_status'].value_counts()
labels = ['Not Recovered', 'Recovered']
ax.bar(labels, recovery_counts.values)
ax.set_ylabel('Count')
ax.set_title('Distribution of Loan Recovery Status')
for i, v in enumerate(recovery_counts.values):
ax.text(i, v + 5, str(v), ha='center')
# Add percentage labels
total = len(data)
for i, v in enumerate(recovery_counts.values):
percentage = v / total * 100
ax.text(i, v/2, f"{percentage:.1f}%", ha='center', color='white', fontweight='bold')
return fig
def plot_feature_importance(model):
"""Plot feature importance."""
return model.plot_feature_importance(top_n=10)
def plot_recovery_by_feature(data, feature, is_categorical=False):
"""Plot recovery rate by a specific feature."""
fig, ax = plt.subplots(figsize=(10, 6))
if is_categorical:
# For categorical features
recovery_by_feature = data.groupby(feature)['recovery_status'].mean().sort_values()
counts = data.groupby(feature).size()
# Create a bar plot
bars = ax.bar(recovery_by_feature.index, recovery_by_feature.values * 100)
ax.set_ylabel('Recovery Rate (%)')
ax.set_title(f'Recovery Rate by {feature.replace("_", " ").title()}')
ax.set_ylim(0, 100)
# Add count labels
for i, (idx, count) in enumerate(counts.items()):
ax.text(i, 5, f"n={count}", ha='center', color='white', fontweight='bold')
# Rotate x-axis labels if needed
if len(recovery_by_feature) > 5:
plt.xticks(rotation=45, ha='right')
else:
# For numerical features, create bins
if feature in ['age', 'loan_term', 'previous_defaults', 'days_past_due']:
# These features have a small range, so we can use them directly
data['feature_bin'] = data[feature]
else:
# Create bins for continuous features
data['feature_bin'] = pd.qcut(data[feature], 5, duplicates='drop')
# Calculate recovery rate by bin
recovery_by_bin = data.groupby('feature_bin')['recovery_status'].mean().sort_index()
counts = data.groupby('feature_bin').size()
# Create a bar plot
bars = ax.bar(range(len(recovery_by_bin)), recovery_by_bin.values * 100)
ax.set_ylabel('Recovery Rate (%)')
ax.set_title(f'Recovery Rate by {feature.replace("_", " ").title()}')
ax.set_ylim(0, 100)
# Set x-axis labels
if feature in ['age', 'loan_term', 'previous_defaults', 'days_past_due']:
ax.set_xticks(range(len(recovery_by_bin)))
ax.set_xticklabels(recovery_by_bin.index)
else:
# Format bin labels
bin_labels = []
for bin_range in recovery_by_bin.index:
if hasattr(bin_range, 'left') and hasattr(bin_range, 'right'):
bin_labels.append(f"{bin_range.left:.1f}-{bin_range.right:.1f}")
else:
bin_labels.append(str(bin_range))
ax.set_xticks(range(len(recovery_by_bin)))
ax.set_xticklabels(bin_labels)
plt.xticks(rotation=45, ha='right')
# Add count labels
for i, count in enumerate(counts.values):
ax.text(i, 5, f"n={count}", ha='center', color='white', fontweight='bold')
# Add feature name to x-axis
ax.set_xlabel(feature.replace("_", " ").title())
plt.tight_layout()
return fig
# Main application
def main():
# Header
st.title("Smart Loan Recovery System")
st.image("https://img.icons8.com/color/96/000000/loan.png", width=100)
# Load data and model
data = load_sample_data()
# Load Random Forest model only
model = load_model("random_forest")
# Prediction page
st.title("Predict Loan Recovery")
st.write("""
Use this tool to predict the probability of recovering a loan based on customer and loan information.
You can either:
1. Enter information for a single loan
2. Upload a CSV file with multiple loans
""")
prediction_type = st.radio("Prediction Type", ["Single Loan", "Batch Prediction"])
if prediction_type == "Single Loan":
st.subheader("Enter Loan Information")
col1, col2, col3 = st.columns(3)
with col1:
age = st.number_input("Age", min_value=18, max_value=100, value=35)
gender = st.selectbox("Gender", ["Male", "Female"])
employment_status = st.selectbox(
"Employment Status",
["Employed", "Self-employed", "Unemployed", "Retired"]
)
annual_income = st.number_input("Annual Income ($)", min_value=0, value=60000)
with col2:
credit_score = st.slider("Credit Score", 300, 850, 650)
loan_amount = st.number_input("Loan Amount ($)", min_value=1000, value=20000)
interest_rate = st.slider("Interest Rate (%)", 1.0, 25.0, 8.0, 0.1)
loan_term = st.selectbox("Loan Term (months)", [12, 24, 36, 48, 60])
with col3:
payment_history = st.selectbox(
"Payment History",
["Excellent", "Good", "Fair", "Poor", "Very Poor"]
)
days_past_due = st.number_input("Days Past Due", min_value=0, value=0)
previous_defaults = st.number_input("Previous Defaults", min_value=0, max_value=10, value=0)
# Calculate derived features
monthly_payment = (loan_amount * (interest_rate/100/12) *
(1 + interest_rate/100/12)**(loan_term)) / \
((1 + interest_rate/100/12)**(loan_term) - 1)
debt_to_income = (monthly_payment * 12) / max(1, annual_income)
# Display calculated values
st.subheader("Calculated Values")
col1, col2 = st.columns(2)
with col1:
st.metric("Monthly Payment", f"${monthly_payment:.2f}")
with col2:
st.metric("Debt-to-Income Ratio", f"{debt_to_income*100:.2f}%")
# Create input dataframe
input_data = pd.DataFrame({
'age': [age],
'gender': [gender],
'employment_status': [employment_status],
'annual_income': [annual_income],
'credit_score': [credit_score],
'loan_amount': [loan_amount],
'interest_rate': [interest_rate],
'loan_term': [loan_term],
'payment_history': [payment_history],
'days_past_due': [days_past_due],
'previous_defaults': [previous_defaults],
'monthly_payment': [monthly_payment],
'debt_to_income': [debt_to_income]
})
# Make prediction
if st.button("Predict Recovery Probability"):
with st.spinner("Calculating recovery probability..."):
recovery_prob = predict_recovery(model, input_data)[0]
# Display result
st.subheader("Prediction Result")
# Create gauge chart for probability
fig, ax = plt.subplots(figsize=(10, 2))
ax.barh([0], [100], color='lightgray', height=0.5)
ax.barh([0], [recovery_prob * 100], color='green' if recovery_prob >= 0.5 else 'red', height=0.5)
ax.set_xlim(0, 100)
ax.set_yticks([])
ax.set_xticks([0, 25, 50, 75, 100])
ax.set_xticklabels(['0%', '25%', '50%', '75%', '100%'])
ax.axvline(50, color='gray', linestyle='--', alpha=0.5)
ax.text(recovery_prob * 100, 0, f"{recovery_prob*100:.1f}%",
ha='center', va='center', fontweight='bold', color='black')
st.pyplot(fig)
# Recommendation
st.subheader("Recovery Assessment")
if recovery_prob >= 0.8:
st.success("High probability of recovery. Standard collection procedures recommended.")
elif recovery_prob >= 0.5:
st.info("Moderate probability of recovery. Consider offering a payment plan.")
elif recovery_prob >= 0.3:
st.warning("Low probability of recovery. Consider debt restructuring or settlement offers.")
else:
st.error("Very low probability of recovery. Consider debt write-off or third-party collection.")
# Risk factors
st.subheader("Key Risk Factors")
risk_factors = []
if credit_score < 600:
risk_factors.append("Low credit score")
if days_past_due > 30:
risk_factors.append("Significant payment delay")
if previous_defaults > 0:
risk_factors.append("History of defaults")
if debt_to_income > 0.4:
risk_factors.append("High debt-to-income ratio")
if payment_history in ["Poor", "Very Poor"]:
risk_factors.append("Poor payment history")
if risk_factors:
for factor in risk_factors:
st.write(f"• {factor}")
else:
st.write("No significant risk factors identified.")
else: # Batch prediction
st.subheader("Upload CSV File")
st.write("""
Upload a CSV file with loan information. The file should contain the following columns:
age, gender, employment_status, annual_income, credit_score, loan_amount, interest_rate,
loan_term, payment_history, days_past_due, previous_defaults
""")
# Sample file download
sample_data = data.sample(5).drop(['customer_id', 'recovery_status'], axis=1, errors='ignore')
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv(index=False).encode('utf-8')
csv = convert_df_to_csv(sample_data)
st.download_button(
"Download Sample CSV",
csv,
"sample_loans.csv",
"text/csv",
key='download-csv'
)
# File upload
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
# Load and display the data
batch_data = pd.read_csv(uploaded_file)
st.write("Preview of uploaded data:")
st.dataframe(batch_data.head())
# Check for required columns
required_cols = ['age', 'gender', 'employment_status', 'annual_income',
'credit_score', 'loan_amount', 'interest_rate',
'loan_term', 'payment_history', 'days_past_due',
'previous_defaults']
missing_cols = [col for col in required_cols if col not in batch_data.columns]
if missing_cols:
st.error(f"Missing required columns: {', '.join(missing_cols)}")
else:
# Calculate derived features if not present
if 'monthly_payment' not in batch_data.columns:
batch_data['monthly_payment'] = (
batch_data['loan_amount'] * (batch_data['interest_rate']/100/12) *
(1 + batch_data['interest_rate']/100/12)**(batch_data['loan_term'])
) / (
(1 + batch_data['interest_rate']/100/12)**(batch_data['loan_term']) - 1
)
if 'debt_to_income' not in batch_data.columns:
batch_data['debt_to_income'] = (batch_data['monthly_payment'] * 12) / batch_data['annual_income'].replace(0, 1)
# Make predictions
if st.button("Run Batch Prediction"):
with st.spinner("Processing batch predictions..."):
# Make predictions
recovery_probs = predict_recovery(model, batch_data)
# Add predictions to the dataframe
batch_data['recovery_probability'] = recovery_probs
batch_data['recovery_prediction'] = (recovery_probs >= 0.5).astype(int)
# Display results
st.subheader("Prediction Results")
st.dataframe(batch_data)
# Summary statistics
st.subheader("Summary")
avg_prob = batch_data['recovery_probability'].mean() * 100
predicted_recoveries = batch_data['recovery_prediction'].sum()
recovery_rate = predicted_recoveries / len(batch_data) * 100
col1, col2 = st.columns(2)
with col1:
st.metric("Average Recovery Probability", f"{avg_prob:.2f}%")
with col2:
st.metric("Predicted Recovery Rate", f"{recovery_rate:.2f}% ({predicted_recoveries}/{len(batch_data)})")
# Distribution of probabilities
st.subheader("Distribution of Recovery Probabilities")
fig, ax = plt.subplots(figsize=(10, 6))
sns.histplot(batch_data['recovery_probability'], bins=20, kde=True, ax=ax)
ax.set_xlabel("Recovery Probability")
ax.set_ylabel("Count")
ax.axvline(0.5, color='red', linestyle='--')
ax.text(0.5, ax.get_ylim()[1]*0.9, "Decision Threshold",
rotation=90, va='top', ha='right', color='red')
st.pyplot(fig)
# Download results
csv = convert_df_to_csv(batch_data)
st.download_button(
"Download Results CSV",
csv,
"loan_recovery_predictions.csv",
"text/csv",
key='download-results'
)
if __name__ == "__main__":
main()
|