File size: 113,575 Bytes
ad05511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
"""
建议模型服务
高精确率模型 + DiCE反事实解释,生成个性化建议
"""

import logging
import time
import sys
import os
import pandas as pd
import numpy as np
from typing import Dict, Any, List, Optional
from pathlib import Path

# 添加DiCE模块路径
dice_path_I = Path("/Users/ning/Desktop/idea/代码forSarcoAdvisor/4.DICE建模/DICE/I")
dice_path_II = Path("/Users/ning/Desktop/idea/代码forSarcoAdvisor/4.DICE建模/DICE/II")
sys.path.append(str(dice_path_I))
sys.path.append(str(dice_path_II))

from schemas.user_input import UserInput, AdvisoryResponse, RecommendationItem
from utils.model_loader import model_manager
from config import DiCEConfig, SystemConfig

# 尝试导入DiCE相关模块
try:
    import dice_ml
    from dice_ml import Dice
    DICE_AVAILABLE = True
except ImportError:
    DICE_AVAILABLE = False
    logging.warning("DiCE module not available, will use rule-based recommendations")

logger = logging.getLogger(__name__)

class AdvisoryService:
    """建议服务类"""
    
    def __init__(self):
        self.model_manager = model_manager
        self.dice_explainers = {}
        # DiCE初始化将在模型加载后进行
        
    def initialize_dice(self):
        """在模型加载后初始化DiCE解释器"""
        self._init_dice_explainers()
    
    def _init_dice_explainers(self):
        """初始化DiCE解释器"""
        if not DICE_AVAILABLE:
            logger.warning("DiCE不可用,将使用基于规则的建议")
            return
        
        try:
            # 加载DiCE数据和解释器
            self._setup_sarcoI_dice()
            self._setup_sarcoII_dice()
            logger.info("DiCE解释器初始化完成")
            
        except Exception as e:
            logger.error(f"DiCE解释器初始化失败: {str(e)}")
            self.dice_explainers = {}
    
    def _setup_sarcoI_dice(self):
        """设置SarcoI DiCE解释器"""
        try:
            # 动态确定数据路径
            app_path = Path(__file__).parent.parent
            if (app_path / "data").exists():
                # 云端部署路径
                data_path = app_path / "data"
            else:
                # 本地开发路径
                data_path = Path('/Users/ning/Desktop/idea/代码forSarcoAdvisor/4.DICE建模/预筛选')
            
            # 🚀 根据配置加载SarcoI数据集
            config = DiCEConfig.get_current_config()
            train_data = pd.read_csv(data_path / 'SarcoI_train_final.csv')

            # 根据配置决定是否合并测试集
            if config["combine_train_test"]:
                try:
                    test_data = pd.read_csv(data_path / 'SarcoI_test_final.csv')
                    all_data = pd.concat([train_data, test_data], ignore_index=True)
                    logger.info(f"SarcoI DiCE合并训练+测试数据: {len(all_data)} 样本")
                except FileNotFoundError:
                    all_data = train_data
                    logger.info("SarcoI测试集未找到,仅使用训练集")
            else:
                all_data = train_data
                logger.info(f"SarcoI DiCE使用训练数据: {len(all_data)} 样本")

            # 根据配置决定是否采样
            if config["max_samples"] and len(all_data) > config["max_samples"]:
                all_data = all_data.sample(n=config["max_samples"], random_state=42)
                logger.info(f"SarcoI DiCE数据采样至: {len(all_data)} 样本")

            logger.info(f"SarcoI DiCE最终数据集: {len(all_data)} 样本 (模式: {DiCEConfig.PRECISION_MODE})")
            
            # 创建DiCE数据对象
            dice_data = dice_ml.Data(
                dataframe=all_data,
                continuous_features=['body_mass_index', 'race_ethnicity', 'WWI', 'age_years', 
                                   'Activity_Sedentary_Ratio', 'Total_Moderate_Minutes_week', 'Vigorous_MET_Ratio'],
                outcome_name='SarcoI'
            )
            
            # 包装模型
            wrapped_model = self._wrap_model('sarcoI')
            dice_model = dice_ml.Model(model=wrapped_model, backend='sklearn')
            
            # 🚀 创建极致精度解释器 - 使用genetic方法 + 配置文件中的高精度参数
            dice_config_params = DiCEConfig.get_current_config()
            logger.info(f"SarcoI DiCE使用精度模式: {DiCEConfig.PRECISION_MODE}")

            # genetic方法是DiCE中最精确但最慢的方法,完美符合您的需求
            self.dice_explainers['sarcoI'] = {
                'explainer': Dice(dice_data, dice_model, method='genetic'),
                'mutable_features': ['Activity_Sedentary_Ratio', 'Total_Moderate_Minutes_week',
                                   'Vigorous_MET_Ratio', 'body_mass_index', 'WWI'],
                # 🎯 使用配置文件中的高精度参数
                'precision_config': dice_config_params
            }
            
        except Exception as e:
            logger.error(f"SarcoI DiCE设置失败: {str(e)}")
    
    def _setup_sarcoII_dice(self):
        """设置SarcoII DiCE解释器"""
        try:
            # 动态确定数据路径
            app_path = Path(__file__).parent.parent
            if (app_path / "data").exists():
                # 云端部署路径
                data_path = app_path / "data"
            else:
                # 本地开发路径
                data_path = Path('/Users/ning/Desktop/idea/代码forSarcoAdvisor/4.DICE建模/预筛选')
            
            # 🚀 根据配置加载SarcoII数据集
            config = DiCEConfig.get_current_config()
            train_data = pd.read_csv(data_path / 'SarcoII_train_final.csv')

            # 根据配置决定是否合并测试集
            if config["combine_train_test"]:
                try:
                    test_data = pd.read_csv(data_path / 'SarcoII_test_final.csv')
                    all_data = pd.concat([train_data, test_data], ignore_index=True)
                    logger.info(f"SarcoII DiCE合并训练+测试数据: {len(all_data)} 样本")
                except FileNotFoundError:
                    all_data = train_data
                    logger.info("SarcoII测试集未找到,仅使用训练集")
            else:
                all_data = train_data
                logger.info(f"SarcoII DiCE使用训练数据: {len(all_data)} 样本")

            # 根据配置决定是否采样
            if config["max_samples"] and len(all_data) > config["max_samples"]:
                all_data = all_data.sample(n=config["max_samples"], random_state=42)
                logger.info(f"SarcoII DiCE数据采样至: {len(all_data)} 样本")

            logger.info(f"SarcoII DiCE最终数据集: {len(all_data)} 样本 (模式: {DiCEConfig.PRECISION_MODE})")
            
            # 创建DiCE数据对象
            dice_data = dice_ml.Data(
                dataframe=all_data,
                continuous_features=['body_mass_index', 'race_ethnicity', 'age_years', 
                                   'Activity_Sedentary_Ratio', 'Activity_Diversity_Index', 'WWI',
                                   'Vigorous_MET_Ratio', 'sedentary_minutes'],
                outcome_name='SarcoII'
            )
            
            # 包装模型
            wrapped_model = self._wrap_model('sarcoII')
            dice_model = dice_ml.Model(model=wrapped_model, backend='sklearn')
            
            # 🚀 创建极致精度解释器 - 使用genetic方法 + 配置文件中的高精度参数
            dice_config_params = DiCEConfig.get_current_config()
            logger.info(f"SarcoII DiCE使用精度模式: {DiCEConfig.PRECISION_MODE}")

            # genetic方法是DiCE中最精确但最慢的方法,完美符合您的需求
            self.dice_explainers['sarcoII'] = {
                'explainer': Dice(dice_data, dice_model, method='genetic'),
                'mutable_features': ['Activity_Sedentary_Ratio', 'Activity_Diversity_Index', 'WWI',
                                   'Vigorous_MET_Ratio', 'sedentary_minutes', 'body_mass_index'],
                # 🎯 使用配置文件中的高精度参数
                'precision_config': dice_config_params
            }
            
        except Exception as e:
            logger.error(f"SarcoII DiCE设置失败: {str(e)}")
    
    def _wrap_model(self, model_type: str):
        """包装模型以适配DiCE"""
        class ModelWrapper:
            def __init__(self, model, threshold, model_manager_ref, model_type):
                self.model = model
                self.threshold = threshold
                self.model_manager = model_manager_ref
                self.model_type = model_type
            
            def predict(self, X):
                X_processed = self._process_input(X)
                proba = self.model.predict_proba(X_processed)[:, 1]
                return (proba >= self.threshold).astype(int)
            
            def predict_proba(self, X):
                X_processed = self._process_input(X)
                return self.model.predict_proba(X_processed)
            
            def _process_input(self, X):
                if isinstance(X, pd.DataFrame):
                    X_processed = X.copy()
                    for col in X_processed.columns:
                        if X_processed[col].dtype.name == 'category':
                            X_processed[col] = X_processed[col].astype('int64')
                    return X_processed
                else:
                    return X
        
        # 检查模型是否存在
        if model_type not in self.model_manager.advisory_models:
            raise KeyError(f"建议模型 '{model_type}' 未找到")
        
        model = self.model_manager.advisory_models[model_type]
        threshold = self.model_manager.thresholds[model_type]['advisory']
        
        return ModelWrapper(model, threshold, self.model_manager, model_type)
    
    async def generate_recommendations(self, user_data: UserInput, risk_types: List[str] = None,
                                     num_recommendations: int = 3, language: str = "zh") -> AdvisoryResponse:
        """
        生成个性化建议
        
        Args:
            user_data: 用户输入数据
            risk_types: 需要生成建议的风险类型
            num_recommendations: 每种类型的建议数量
            
        Returns:
            AdvisoryResponse: 建议结果
        """
        start_time = time.time()
        fallback_used = False
        
        try:
            # 转换用户数据
            user_dict = user_data.model_dump()
            
            # 默认为高风险的类型生成建议
            if risk_types is None:
                risk_types = self._determine_risk_types(user_dict)
            
            # 生成建议
            sarcoI_recommendations = []
            sarcoII_recommendations = []
            
            if 'sarcoI' in risk_types:
                sarcoI_recommendations = await self._generate_sarcoI_recommendations(
                    user_dict, num_recommendations, language
                )

            if 'sarcoII' in risk_types:
                sarcoII_recommendations = await self._generate_sarcoII_recommendations(
                    user_dict, num_recommendations, language
                )
            
            # 如果没有生成任何建议,使用降级方案
            if not sarcoI_recommendations and not sarcoII_recommendations:
                logger.warning("DiCE建议生成失败,使用降级方案")
                fallback_recs = self._generate_fallback_recommendations(user_dict, risk_types, language)
                if 'sarcoI' in risk_types:
                    sarcoI_recommendations = fallback_recs[:2]  # 前2个给SarcoI
                if 'sarcoII' in risk_types:
                    sarcoII_recommendations = fallback_recs[2:4] if len(fallback_recs) > 2 else fallback_recs  # 后2个给SarcoII
                fallback_used = True

            # 合并所有建议用于API返回
            all_recommendations = sarcoI_recommendations + sarcoII_recommendations
            
            # 生成优先级行动和目标指标
            priority_actions = self._generate_priority_actions(sarcoI_recommendations, sarcoII_recommendations)
            target_metrics = self._generate_target_metrics(user_dict, sarcoI_recommendations, sarcoII_recommendations)
            
            processing_time = time.time() - start_time
            
            response = AdvisoryResponse(
                sarcoI_recommendations=sarcoI_recommendations,
                sarcoII_recommendations=sarcoII_recommendations,
                recommendations=all_recommendations,  # 添加合并的建议列表
                priority_actions=priority_actions,
                target_metrics=target_metrics,
                processing_time=processing_time,
                success=True,
                fallback_used=fallback_used
            )
            
            logger.info(f"建议生成完成: SarcoI={len(sarcoI_recommendations)}, SarcoII={len(sarcoII_recommendations)}, "
                       f"fallback={fallback_used}, 耗时={processing_time:.2f}s")
            
            return response
            
        except Exception as e:
            logger.error(f"建议生成失败: {str(e)}")
            # 返回基础建议
            basic_recommendations = self._generate_basic_recommendations(language)
            processing_time = time.time() - start_time

            if language == 'en':
                priority_actions = ["Consult Professional Doctor", "Increase Physical Activity", "Improve Diet"]
                target_metrics = {"Recommendation": "Seek professional medical guidance"}
            else:
                priority_actions = ["咨询专业医生", "增加体力活动", "改善饮食习惯"]
                target_metrics = {"建议": "寻求专业医疗指导"}

            return AdvisoryResponse(
                sarcoI_recommendations=basic_recommendations,
                sarcoII_recommendations=[],
                recommendations=basic_recommendations,  # 添加合并的建议列表
                priority_actions=priority_actions,
                target_metrics=target_metrics,
                processing_time=processing_time,
                success=False,
                fallback_used=True
            )
    
    def _determine_risk_types(self, user_dict: Dict) -> List[str]:
        """确定需要生成建议的风险类型"""
        risk_types = []
        
        try:
            # 使用建议模型进行高精确率预测
            sarcoI_result = self.model_manager.predict_advisory(user_dict, 'sarcoI')
            sarcoII_result = self.model_manager.predict_advisory(user_dict, 'sarcoII')
            
            if sarcoI_result['risk_level'] in ['medium', 'high']:
                risk_types.append('sarcoI')
            
            if sarcoII_result['risk_level'] in ['medium', 'high']:
                risk_types.append('sarcoII')
                
        except Exception as e:
            logger.error(f"风险类型判断失败: {str(e)}")
            # 默认返回所有类型
            risk_types = ['sarcoI', 'sarcoII']
        
        return risk_types if risk_types else ['sarcoI', 'sarcoII']
    
    async def _generate_sarcoI_recommendations(self, user_dict: Dict, num_recs: int, language: str = "zh") -> List[RecommendationItem]:
        """生成SarcoI建议"""
        recommendations = []
        
        try:
            if 'sarcoI' in self.dice_explainers:
                logger.info("SarcoI 尝试使用DiCE生成建议...")
                # 使用DiCE生成建议,添加超时保护
                import signal

                def dice_timeout_handler(signum, frame):
                    raise TimeoutError("DiCE生成超时")

                # 设置2分钟超时
                signal.signal(signal.SIGALRM, dice_timeout_handler)
                signal.alarm(120)

                try:
                    dice_recs = self._generate_dice_recommendations(user_dict, 'sarcoI', num_recs, language)
                    recommendations.extend(dice_recs)
                    logger.info(f"SarcoI DiCE生成成功,获得{len(dice_recs)}个建议")
                finally:
                    signal.alarm(0)

            # 如果DiCE建议不足,补充规则建议
            if len(recommendations) < num_recs:
                logger.info("SarcoI DiCE建议不足,补充规则建议...")
                rule_recs = self._generate_sarcoI_rule_recommendations(user_dict, language)
                recommendations.extend(rule_recs[:num_recs - len(recommendations)])

        except Exception as e:
            logger.error(f"SarcoI建议生成失败: {str(e)}")
            logger.info("SarcoI 使用规则建议作为降级方案")
            recommendations = self._generate_sarcoI_rule_recommendations(user_dict, language)[:num_recs]
        
        return recommendations[:num_recs]
    
    async def _generate_sarcoII_recommendations(self, user_dict: Dict, num_recs: int, language: str = "zh") -> List[RecommendationItem]:
        """生成SarcoII建议"""
        recommendations = []
        
        try:
            if 'sarcoII' in self.dice_explainers:
                # 使用DiCE生成建议
                dice_recs = self._generate_dice_recommendations(user_dict, 'sarcoII', num_recs, language)
                recommendations.extend(dice_recs)
            
            # 如果DiCE建议不足,补充规则建议
            if len(recommendations) < num_recs:
                rule_recs = self._generate_sarcoII_rule_recommendations(user_dict, language)
                recommendations.extend(rule_recs[:num_recs - len(recommendations)])

        except Exception as e:
            logger.error(f"SarcoII建议生成失败: {str(e)}")
            recommendations = self._generate_sarcoII_rule_recommendations(user_dict, language)[:num_recs]
        
        return recommendations[:num_recs]
    
    def _generate_dice_recommendations(self, user_dict: Dict, model_type: str, num_recs: int, language: str = "zh") -> List[RecommendationItem]:
        """使用DiCE生成反事实建议"""
        recommendations = []
        import time
        
        try:
            dice_start_time = time.time()
            logger.info(f"开始{model_type} DiCE分析...")
            
            dice_config = self.dice_explainers[model_type]
            explainer = dice_config['explainer']
            mutable_features = dice_config['mutable_features']
            
            # 准备查询数据
            query_df = self._prepare_dice_query(user_dict, model_type)
            logger.info(f"{model_type} DiCE查询数据准备完成: {query_df.shape}")
            logger.info(f"{model_type} 查询数据内容: {query_df.iloc[0].to_dict()}")
            
            # 检查用户当前预测结果
            wrapped_model = self._wrap_model(model_type)
            current_prediction = wrapped_model.predict_proba(query_df)[0]
            current_class = wrapped_model.predict(query_df)[0]
            logger.info(f"{model_type} 当前预测: 类别={current_class}, 概率={current_prediction}")
            
            # 如果当前预测已经是低风险,生成维持性建议
            if current_class == 0:
                logger.info(f"{model_type} 当前预测为低风险类别(0),生成维持性建议")
                maintenance_recommendations = self._generate_maintenance_recommendations(user_dict, model_type, language)
                recommendations.extend(maintenance_recommendations)
                return recommendations
            
            # 生成反事实 - 保持原始参数确保精确度
            logger.info(f"{model_type} 开始生成反事实,目标类别=0,可变特征={mutable_features}")
            
            # 🚀 使用配置文件中的极致精度参数
            dice_config_params = DiCEConfig.get_current_config()
            logger.info(f"{model_type} 使用DiCE精度模式: {DiCEConfig.PRECISION_MODE}")
            logger.info(f"{model_type} DiCE配置参数: {dice_config_params}")

            dice_params_list = [
                # 🚀 极致精度配置:追求最高质量
                {
                    "total_CFs": dice_config_params.get('max_counterfactuals', 500),
                    "desired_class": 0,
                    "features_to_vary": mutable_features,
                    "proximity_weight": dice_config_params.get('proximity_weight', 0.01),
                    "diversity_weight": dice_config_params.get('diversity_weight', 15.0)
                },
                # 🔥 高精度备用配置
                {
                    "total_CFs": dice_config_params.get('max_counterfactuals', 500) // 2,
                    "desired_class": 0,
                    "features_to_vary": mutable_features,
                    "proximity_weight": dice_config_params.get('proximity_weight', 0.01) * 2,
                    "diversity_weight": dice_config_params.get('diversity_weight', 15.0) * 0.8
                },
                # 🛡️ 保守配置(如果前两个失败)
                {
                    "total_CFs": 100,
                    "desired_class": 0,
                    "features_to_vary": mutable_features,
                    "proximity_weight": 0.1,
                    "diversity_weight": 5.0
                }
            ]
            
            # 🚀 设置DiCE总体超时 - 极致精度模式无时间限制
            dice_timeout = dice_config_params.get('timeout_seconds', None)
            if dice_timeout:
                logger.info(f"{model_type} DiCE设置超时: {dice_timeout}秒")
            else:
                logger.info(f"{model_type} DiCE无超时限制 (极致精度模式)")

            counterfactuals = None
            for i, params in enumerate(dice_params_list):
                try:
                    logger.info(f"{model_type} 尝试DiCE参数组合 {i+1}: {params}")
                    logger.info(f"{model_type} 查询数据形状: {query_df.shape}")
                    logger.info(f"{model_type} 可变特征: {params.get('features_to_vary', [])}")

                    # 🚀 生成反事实,添加详细日志和计时
                    dice_gen_start = time.time()
                    logger.info(f"{model_type} 开始DiCE生成 (极致精度模式)...")
                    logger.info(f"{model_type} 预期生成 {params['total_CFs']} 个反事实样本")
                    logger.info(f"{model_type} 多样性权重: {params['diversity_weight']}, 接近度权重: {params['proximity_weight']}")

                    counterfactuals = explainer.generate_counterfactuals(query_df, **params)

                    dice_gen_time = time.time() - dice_gen_start
                    logger.info(f"{model_type} DiCE生成完成,耗时: {dice_gen_time:.2f}秒")
                    
                    # 检查是否生成了有效的反事实
                    if (hasattr(counterfactuals, 'cf_examples_list') and 
                        len(counterfactuals.cf_examples_list) > 0 and
                        counterfactuals.cf_examples_list[0].final_cfs_df is not None and
                        len(counterfactuals.cf_examples_list[0].final_cfs_df) > 0):
                        logger.info(f"{model_type} DiCE参数组合 {i+1} 成功生成反事实")
                        break
                    else:
                        logger.warning(f"{model_type} DiCE参数组合 {i+1} 未生成有效反事实")
                        counterfactuals = None
                        
                except Exception as param_e:
                    logger.warning(f"{model_type} DiCE参数组合 {i+1} 失败: {str(param_e)}")
                    counterfactuals = None
                    
            if counterfactuals is None:
                logger.error(f"{model_type} 所有DiCE参数组合均失败")
            
            dice_time = time.time() - dice_start_time
            logger.info(f"{model_type} DiCE分析完成,耗时: {dice_time:.2f}秒")
            
            # 解析反事实结果
            logger.info(f"{model_type} 反事实对象类型: {type(counterfactuals)}")
            logger.info(f"{model_type} 反事实对象属性: {dir(counterfactuals)}")
            
            if hasattr(counterfactuals, 'cf_examples_list'):
                logger.info(f"{model_type} cf_examples_list长度: {len(counterfactuals.cf_examples_list)}")
                
                if len(counterfactuals.cf_examples_list) > 0:
                    cf_example = counterfactuals.cf_examples_list[0]
                    logger.info(f"{model_type} cf_example类型: {type(cf_example)}")
                    logger.info(f"{model_type} cf_example属性: {dir(cf_example)}")
                    
                    if hasattr(cf_example, 'final_cfs_df'):
                        cf_df = cf_example.final_cfs_df
                        logger.info(f"{model_type} final_cfs_df: {cf_df is not None}")
                        
                        if cf_df is not None:
                            logger.info(f"{model_type} 反事实DataFrame形状: {cf_df.shape}")
                            logger.info(f"{model_type} 反事实内容:\n{cf_df}")

                            # 临时简化:直接使用前N个反事实,避免Series比较问题
                            logger.info(f"{model_type} 使用简化筛选,直接选择前{num_recs}个反事实")
                            best_counterfactuals = cf_df.head(num_recs)

                            logger.info(f"{model_type} 筛选出 {len(best_counterfactuals)} 个最佳反事实")

                            # 处理筛选后的反事实
                            for i, (_, cf_row) in enumerate(best_counterfactuals.iterrows()):
                                try:
                                    logger.info(f"{model_type} 处理第{i+1}个最佳反事实: {cf_row.to_dict()}")

                                    # 安全的特征变化分析
                                    try:
                                        changes = self._analyze_feature_changes(query_df.iloc[0], cf_row, mutable_features)
                                        logger.info(f"{model_type} 特征变化: {changes}")
                                    except Exception as e:
                                        logger.error(f"{model_type} 特征变化分析失败: {str(e)}")
                                        continue

                                    # 安全的建议生成,避免重复
                                    try:
                                        rec = self._changes_to_recommendation(changes, model_type, i + 1, language)
                                        if rec:
                                            # 检查是否与已有建议重复
                                            is_duplicate = False
                                            for existing_rec in recommendations:
                                                if existing_rec.title == rec.title:
                                                    is_duplicate = True
                                                    break

                                            if not is_duplicate:
                                                recommendations.append(rec)
                                                logger.info(f"{model_type} 生成建议: {rec.title}")
                                            else:
                                                logger.info(f"{model_type} 跳过重复建议: {rec.title}")
                                        else:
                                            logger.warning(f"{model_type}{i+1}个反事实未生成有效建议")
                                    except Exception as e:
                                        logger.error(f"{model_type} 建议生成失败: {str(e)}")
                                        continue

                                except Exception as e:
                                    logger.error(f"{model_type} 处理第{i+1}个反事实时出错: {str(e)}")
                                    import traceback
                                    logger.error(f"{model_type} 错误详情: {traceback.format_exc()}")
                                    continue
                        else:
                            logger.error(f"{model_type} final_cfs_df 为 None")
                    else:
                        logger.error(f"{model_type} cf_example 没有 final_cfs_df 属性")
                else:
                    logger.error(f"{model_type} cf_examples_list 为空")
            else:
                logger.error(f"{model_type} counterfactuals 没有 cf_examples_list 属性")
            
        except Exception as e:
            dice_time = time.time() - dice_start_time if 'dice_start_time' in locals() else 0
            logger.error(f"{model_type} DiCE建议生成失败 (耗时: {dice_time:.2f}秒): {str(e)}")
            
            # 🚀 追求极致精度模式:移除所有超时限制,无论耗时多久都要获得最佳结果
            # 不再有任何时间限制,DiCE将运行到完成为止
            logger.info(f"{model_type} DiCE分析耗时: {dice_time:.2f}秒 - 极致精度模式,无时间限制")
        
        return recommendations

    def _select_best_counterfactuals(self, original_row, cf_df, mutable_features, max_count):
        """🚀 极致精度反事实筛选 - 多维度质量评估,确保最优建议"""
        import pandas as pd
        import numpy as np

        if len(cf_df) <= max_count:
            return cf_df

        # 🎯 扩展特征分组,更细致的分类确保建议全面性
        feature_groups = {
            'weight_management': ['body_mass_index', 'WWI'],
            'aerobic_exercise': ['Total_Moderate_Minutes_week', 'Vigorous_MET_Ratio'],
            'sedentary_behavior': ['Activity_Sedentary_Ratio', 'sedentary_minutes'],
            'exercise_diversity': ['Activity_Diversity_Index'],
            'lifestyle_balance': []  # 综合性改变
        }

        # 🏆 多维度质量评分系统
        scored_cfs = []

        for idx, cf_row in cf_df.iterrows():
            # 1. 计算变化幅度合理性 (0-1分)
            change_reasonableness = self._calculate_change_reasonableness(original_row, cf_row, mutable_features)

            # 2. 计算特征变化多样性 (0-1分)
            change_diversity = self._calculate_change_diversity(original_row, cf_row, mutable_features)

            # 3. 计算实际可操作性 (0-1分)
            actionability = self._calculate_actionability(original_row, cf_row, mutable_features)

            # 4. 计算健康改善潜力 (0-1分)
            health_impact = self._calculate_health_impact(original_row, cf_row, mutable_features)

            # 🎯 综合质量评分 (加权平均)
            quality_score = (
                change_reasonableness * 0.25 +  # 变化合理性
                change_diversity * 0.20 +       # 多样性
                actionability * 0.30 +          # 可操作性 (最重要)
                health_impact * 0.25            # 健康影响
            )

            # 获取主要变化特征类别
            primary_feature = self._get_primary_change_feature(original_row, cf_row, mutable_features)
            feature_category = self._get_feature_category(primary_feature, feature_groups)

            scored_cfs.append({
                'cf_row': cf_row,
                'quality_score': quality_score,
                'feature_category': feature_category,
                'primary_feature': primary_feature,
                'change_reasonableness': change_reasonableness,
                'change_diversity': change_diversity,
                'actionability': actionability,
                'health_impact': health_impact
            })

        # 🏅 按质量评分排序
        scored_cfs.sort(key=lambda x: x['quality_score'], reverse=True)

        # 🎪 智能选择策略:优先质量,兼顾多样性
        selected_cfs = []
        used_categories = set()

        # 第一轮:每个类别选择最高质量的建议
        for cf_info in scored_cfs:
            if cf_info['feature_category'] not in used_categories:
                selected_cfs.append(cf_info['cf_row'])
                used_categories.add(cf_info['feature_category'])

                if len(selected_cfs) >= max_count:
                    break

        # 第二轮:如果还需要更多建议,选择剩余的高质量建议
        if len(selected_cfs) < max_count:
            for cf_info in scored_cfs:
                if len(selected_cfs) >= max_count:
                    break

                # 检查是否已经选择过这个建议
                already_selected = False
                for selected_cf in selected_cfs:
                    if self._are_cfs_similar(selected_cf, cf_info['cf_row'], mutable_features):
                        already_selected = True
                        break

                if not already_selected:
                    selected_cfs.append(cf_info['cf_row'])

        return pd.DataFrame(selected_cfs)

    def _calculate_change_reasonableness(self, original_row, cf_row, mutable_features):
        """计算变化幅度的合理性 (0-1分)"""
        reasonableness_scores = []

        for feature in mutable_features:
            if feature in original_row and feature in cf_row:
                original_val = original_row[feature]
                cf_val = cf_row[feature]

                # 计算相对变化幅度
                if original_val != 0:
                    relative_change = abs(cf_val - original_val) / abs(original_val)
                else:
                    relative_change = abs(cf_val)

                # 根据特征类型设定合理变化范围
                if 'bmi' in feature.lower() or 'weight' in feature.lower():
                    # 体重相关:10-30%变化较合理
                    if 0.1 <= relative_change <= 0.3:
                        score = 1.0
                    elif relative_change < 0.1:
                        score = relative_change / 0.1  # 变化太小
                    else:
                        score = max(0.3, 1.0 - (relative_change - 0.3) / 0.5)  # 变化太大
                elif 'activity' in feature.lower() or 'minutes' in feature.lower():
                    # 运动相关:20-100%变化较合理
                    if 0.2 <= relative_change <= 1.0:
                        score = 1.0
                    elif relative_change < 0.2:
                        score = relative_change / 0.2
                    else:
                        score = max(0.2, 1.0 - (relative_change - 1.0) / 1.0)
                else:
                    # 其他特征:通用评分
                    if 0.1 <= relative_change <= 0.5:
                        score = 1.0
                    elif relative_change < 0.1:
                        score = relative_change / 0.1
                    else:
                        score = max(0.2, 1.0 - (relative_change - 0.5) / 0.5)

                reasonableness_scores.append(score)

        return np.mean(reasonableness_scores) if reasonableness_scores else 0.5

    def _calculate_change_diversity(self, original_row, cf_row, mutable_features):
        """计算特征变化的多样性 (0-1分)"""
        changed_features = 0
        total_features = len(mutable_features)

        for feature in mutable_features:
            if feature in original_row and feature in cf_row:
                if abs(original_row[feature] - cf_row[feature]) > 1e-6:  # 有显著变化
                    changed_features += 1

        # 多样性评分:变化特征数量 / 总特征数量
        diversity_ratio = changed_features / total_features if total_features > 0 else 0

        # 理想情况是改变2-4个特征,给予最高分
        if 2 <= changed_features <= 4:
            return 1.0
        elif changed_features == 1:
            return 0.7  # 单一变化,分数较低
        elif changed_features > 4:
            return max(0.5, 1.0 - (changed_features - 4) * 0.1)  # 变化太多,逐渐降分
        else:
            return 0.3  # 没有变化,最低分

    def _calculate_actionability(self, original_row, cf_row, mutable_features):
        """计算实际可操作性 (0-1分)"""
        actionability_scores = []

        for feature in mutable_features:
            if feature in original_row and feature in cf_row:
                original_val = original_row[feature]
                cf_val = cf_row[feature]
                change = abs(cf_val - original_val)

                # 根据特征类型评估可操作性
                if 'minutes' in feature.lower():
                    # 运动时间:每周增加30-150分钟较容易实现
                    if 30 <= change <= 150:
                        score = 1.0
                    elif change < 30:
                        score = 0.8  # 变化太小,效果有限
                    else:
                        score = max(0.4, 1.0 - (change - 150) / 200)  # 变化太大,难以实现

                elif 'bmi' in feature.lower():
                    # BMI:减少1-5较容易实现
                    if 1 <= change <= 5:
                        score = 1.0
                    elif change < 1:
                        score = 0.7
                    else:
                        score = max(0.3, 1.0 - (change - 5) / 10)

                elif 'ratio' in feature.lower():
                    # 比例类特征:0.1-0.3的变化较合理
                    if 0.1 <= change <= 0.3:
                        score = 1.0
                    elif change < 0.1:
                        score = 0.8
                    else:
                        score = max(0.4, 1.0 - (change - 0.3) / 0.5)
                else:
                    # 默认评分
                    score = 0.8

                actionability_scores.append(score)

        return np.mean(actionability_scores) if actionability_scores else 0.5

    def _calculate_health_impact(self, original_row, cf_row, mutable_features):
        """计算健康改善潜力 (0-1分)"""
        impact_scores = []

        for feature in mutable_features:
            if feature in original_row and feature in cf_row:
                original_val = original_row[feature]
                cf_val = cf_row[feature]

                # 根据特征类型和变化方向评估健康影响
                if 'bmi' in feature.lower():
                    # BMI降低有益健康
                    if cf_val < original_val:  # BMI降低
                        reduction = (original_val - cf_val) / original_val
                        score = min(1.0, reduction * 5)  # BMI每降低20%得满分
                    else:
                        score = 0.3  # BMI增加不利健康

                elif 'minutes' in feature.lower() and 'moderate' in feature.lower():
                    # 中等强度运动增加有益健康
                    if cf_val > original_val:  # 运动时间增加
                        increase = (cf_val - original_val) / max(original_val, 1)
                        score = min(1.0, increase * 2)  # 运动时间每增加50%得满分
                    else:
                        score = 0.4  # 运动减少不利健康

                elif 'sedentary' in feature.lower():
                    # 久坐时间减少有益健康
                    if cf_val < original_val:  # 久坐时间减少
                        reduction = (original_val - cf_val) / original_val
                        score = min(1.0, reduction * 3)  # 久坐时间每减少33%得满分
                    else:
                        score = 0.2  # 久坐增加不利健康

                elif 'vigorous' in feature.lower():
                    # 高强度运动比例增加有益健康
                    if cf_val > original_val:
                        increase = (cf_val - original_val) / max(original_val, 0.1)
                        score = min(1.0, increase * 1.5)
                    else:
                        score = 0.5

                else:
                    # 默认中等影响
                    score = 0.6

                impact_scores.append(score)

        return np.mean(impact_scores) if impact_scores else 0.5

    def _are_cfs_similar(self, cf1, cf2, mutable_features, threshold=0.1):
        """判断两个反事实是否相似"""
        similarity_count = 0
        total_features = 0

        for feature in mutable_features:
            if feature in cf1 and feature in cf2:
                total_features += 1
                val1, val2 = cf1[feature], cf2[feature]

                # 计算相对差异
                if abs(val1) > 1e-6 or abs(val2) > 1e-6:
                    relative_diff = abs(val1 - val2) / max(abs(val1), abs(val2), 1e-6)
                    if relative_diff < threshold:
                        similarity_count += 1
                else:
                    similarity_count += 1  # 都接近0,认为相似

        similarity_ratio = similarity_count / total_features if total_features > 0 else 0
        return similarity_ratio > 0.8  # 80%以上特征相似则认为是相似的反事实

    def _calculate_counterfactual_quality(self, original_row, cf_row, mutable_features):
        """计算反事实的质量分数"""
        score = 0

        for feature in mutable_features:
            if feature in original_row.index and feature in cf_row.index:
                # 确保获取标量值
                original_val = float(original_row[feature])
                cf_val = float(cf_row[feature])
                change = abs(cf_val - original_val)

                # 根据特征类型评分
                if feature == 'body_mass_index':
                    # BMI变化:合理范围内的变化得分更高
                    if 18.5 <= cf_val <= 24.9:  # 正常BMI范围
                        score += 10
                    elif 25 <= cf_val <= 29.9:  # 超重范围
                        score += 5
                    else:  # 过低或过高
                        score -= 5

                    # 变化幅度合理性
                    if change > 50:  # BMI变化超过50不合理
                        score -= 20
                    elif change > 20:  # 变化过大
                        score -= 10

                elif feature in ['Total_Moderate_Minutes_week', 'Vigorous_MET_Ratio', 'Activity_Sedentary_Ratio']:
                    # 运动相关特征:有改善但不过度
                    if change > 0 and change <= original_val * 2:  # 合理增长
                        score += 8
                    elif change > original_val * 2:  # 过度增长
                        score -= 5

                elif feature == 'WWI':
                    # WWI变化:适度减少
                    if cf_val < original_val and change <= 3:  # 适度减少
                        score += 6
                    elif change > 5:  # 变化过大
                        score -= 8

        return score

    def _get_primary_change_feature(self, original_row, cf_row, mutable_features):
        """找到变化最大的特征"""
        max_change = 0
        primary_feature = None

        for feature in mutable_features:
            if feature in original_row.index and feature in cf_row.index:
                # 确保获取标量值
                original_val = float(original_row[feature])
                cf_val = float(cf_row[feature])

                # 计算相对变化
                if abs(original_val) > 1e-10:  # 避免除零错误
                    relative_change = abs((cf_val - original_val) / original_val)
                else:
                    relative_change = abs(cf_val)

                if relative_change > max_change:
                    max_change = relative_change
                    primary_feature = feature

        return primary_feature or mutable_features[0]

    def _get_feature_category(self, feature, feature_groups):
        """获取特征所属的类别"""
        for category, features in feature_groups.items():
            if feature in features:
                return category
        return 'other'

    def _prepare_dice_query(self, user_dict: Dict, model_type: str) -> pd.DataFrame:
        """准备DiCE查询数据"""
        if model_type == 'sarcoI':
            features = ['body_mass_index', 'race_ethnicity', 'WWI', 'age_years',
                       'Activity_Sedentary_Ratio', 'Total_Moderate_Minutes_week', 'Vigorous_MET_Ratio']
        else:  # sarcoII
            features = ['body_mass_index', 'race_ethnicity', 'age_years',
                       'Activity_Sedentary_Ratio', 'Activity_Diversity_Index', 'WWI',
                       'Vigorous_MET_Ratio', 'sedentary_minutes']
        
        feature_values = []
        missing_features = []
        
        for feature in features:
            if feature in user_dict and user_dict[feature] is not None:
                value = user_dict[feature]
                feature_values.append(value)
                logger.debug(f"{model_type} 特征 {feature}: {value} (来自用户数据)")
            else:
                # 默认值
                defaults = {
                    'Total_Moderate_Minutes_week': 150,
                    'Activity_Diversity_Index': 2,
                    'sedentary_minutes': 480,
                    'Activity_Sedentary_Ratio': 0.5,
                    'Vigorous_MET_Ratio': 0.2
                }
                default_val = defaults.get(feature, 0)
                feature_values.append(default_val)
                missing_features.append(feature)
                logger.warning(f"{model_type} 特征 {feature}: {default_val} (默认值)")
        
        if missing_features:
            logger.info(f"{model_type} DiCE缺失特征使用默认值: {missing_features}")
        
        query_df = pd.DataFrame([feature_values], columns=features)
        
        # 验证数据范围
        self._validate_dice_query_data(query_df, model_type)
        
        return query_df
    
    def _validate_dice_query_data(self, query_df: pd.DataFrame, model_type: str):
        """验证DiCE查询数据的合理性"""
        data = query_df.iloc[0]
        
        # 检查关键特征的合理性
        if data['body_mass_index'] < 10 or data['body_mass_index'] > 50:
            logger.warning(f"{model_type} BMI异常: {data['body_mass_index']}")
        
        if data['WWI'] < 5 or data['WWI'] > 20:
            logger.warning(f"{model_type} WWI异常: {data['WWI']}")
            
        if data['age_years'] < 18 or data['age_years'] > 80:
            logger.warning(f"{model_type} 年龄异常: {data['age_years']}")
        
        # 检查活动相关特征
        if 'Activity_Sedentary_Ratio' in data:
            if data['Activity_Sedentary_Ratio'] < 0 or data['Activity_Sedentary_Ratio'] > 1:
                logger.warning(f"{model_type} 久坐比例异常: {data['Activity_Sedentary_Ratio']}")
        
        logger.info(f"{model_type} DiCE数据验证完成")
    
    def _analyze_feature_changes(self, original, counterfactual, mutable_features) -> List[Dict]:
        """分析特征变化"""
        changes = []
        
        for feature in mutable_features:
            if feature in original.index and feature in counterfactual.index:
                # 确保获取标量值,避免Series比较问题
                original_val = float(original[feature])
                cf_val = float(counterfactual[feature])

                if abs(cf_val - original_val) > 1e-6:
                    # 安全的百分比计算
                    if abs(original_val) > 1e-10:
                        change_pct = ((cf_val - original_val) / original_val) * 100
                    else:
                        change_pct = 0.0

                    changes.append({
                        'feature': feature,
                        'original': original_val,
                        'target': cf_val,
                        'change': cf_val - original_val,
                        'change_pct': change_pct
                    })
        
        return changes
    
    def _changes_to_recommendation(self, changes: List[Dict], model_type: str, rec_id: int, language: str = "zh") -> Optional[RecommendationItem]:
        """将特征变化转换为多样化的精确建议"""
        if not changes:
            return None

        # 按特征类型优先级选择,确保多样性
        feature_priority = {
            'Total_Moderate_Minutes_week': 1,  # 运动优先
            'Vigorous_MET_Ratio': 2,
            'Activity_Diversity_Index': 3,
            'body_mass_index': 4,  # 体重其次
            'WWI': 5,
            'Activity_Sedentary_Ratio': 6
        }

        # 根据建议ID选择不同类型的特征,确保5个建议的多样性
        if rec_id == 1:
            # 第一个建议:中等强度运动
            preferred_features = ['Total_Moderate_Minutes_week', 'moderate_minutes']
        elif rec_id == 2:
            # 第二个建议:高强度运动
            preferred_features = ['Vigorous_MET_Ratio', 'vigorous_minutes']
        elif rec_id == 3:
            # 第三个建议:运动多样性
            preferred_features = ['Activity_Diversity_Index', 'Activity_Sedentary_Ratio']
        elif rec_id == 4:
            # 第四个建议:体重管理
            preferred_features = ['body_mass_index', 'WWI']
        else:
            # 第五个建议:久坐行为改善
            preferred_features = ['sedentary_minutes', 'Activity_Sedentary_Ratio']

        # 寻找首选特征的变化
        selected_change = None
        for feature in preferred_features:
            for change in changes:
                if change['feature'] == feature:
                    selected_change = change
                    break
            if selected_change:
                break

        # 如果没找到首选特征,选择变化最大的
        if not selected_change:
            changes.sort(key=lambda x: abs(x['change']), reverse=True)
            selected_change = changes[0]

        feature = selected_change['feature']
        original_val = selected_change['original']
        target_val = selected_change['target']
        change_val = selected_change['change']

        # 生成精确数值建议
        title, description, target_change, expected_impact = self._get_precise_feature_recommendation(
            feature, original_val, target_val, change_val, model_type, language
        )

        # 基于变化幅度计算优先级
        change_magnitude = abs(change_val / original_val) if original_val != 0 else abs(change_val)
        if change_magnitude > 0.3:  # 变化超过30%
            priority = "High" if language == 'en' else "高"
        elif change_magnitude > 0.15:  # 变化超过15%
            priority = "Medium" if language == 'en' else "中"
        else:
            priority = "Low" if language == 'en' else "低"

        return RecommendationItem(
            title=title,
            description=description,
            priority=priority,
            target_change=target_change,
            expected_impact=expected_impact
        )
    
    def _get_precise_feature_recommendation(self, feature: str, original_val: float, target_val: float,
                                          change_val: float, model_type: str, language: str = "zh") -> tuple:
        """获取基于精确数值的特征建议"""

        if feature == 'body_mass_index':
            if language == 'en':
                title = "Exercise-Based Weight Management Plan"
                description = f"Current BMI: {original_val:.1f} → Target: {target_val:.1f}"
                if original_val > target_val:
                    weight_loss = (original_val - target_val) * 2.5  # Assuming height 1.7m, 1 BMI ≈ 2.5kg
                    description += f"\n• Weight Loss Goal: {weight_loss:.1f} kg"
                    description += f"\n• Timeline: {weight_loss/0.75:.0f} weeks (0.5-1kg/week)"
                    description += f"\n• Exercise Plan:"
                    description += f"\n  - Aerobic: 300+ min/week"
                    description += f"\n  - Strength training: 3x/week"
                    description += f"\n  - HIIT: 2x/week"
                target_change = f"BMI: {original_val:.1f}{target_val:.1f} (change: {change_val:+.1f})"
                expected_impact = f"Every 1-point BMI reduction decreases sarcopenia risk by 8-12% through exercise"
            else:
                title = "运动减重精确管理计划"
                description = f"当前BMI: {original_val:.1f} → 目标: {target_val:.1f}"
                if original_val > target_val:
                    weight_loss = (original_val - target_val) * 2.5  # 假设身高1.7m,每1BMI约2.5kg
                    description += f"\n• 减重目标: {weight_loss:.1f} 公斤"
                    description += f"\n• 时间计划: {weight_loss/0.75:.0f} 周 (每周0.5-1公斤)"
                    description += f"\n• 运动方案:"
                    description += f"\n  - 有氧运动: 每周300+分钟"
                    description += f"\n  - 力量训练: 每周3次"
                    description += f"\n  - HIIT训练: 每周2次"
                target_change = f"BMI: {original_val:.1f}{target_val:.1f} (变化: {change_val:+.1f})"
                expected_impact = f"BMI每降低1点,通过运动肌少症风险降低约8-12%"

        elif feature == 'Total_Moderate_Minutes_week':
            if language == 'en':
                title = "Moderate-Intensity Exercise Precision Plan"
                description = f"Current weekly: {original_val:.0f}min → Target: {target_val:.0f}min"
                if target_val > original_val:
                    increase = target_val - original_val
                    daily_increase = increase / 7
                    description += f"\n• Increase: {increase:.0f} min/week ({daily_increase:.0f} min/day)"

                    # Specific exercise recommendations
                    if daily_increase <= 15:
                        description += f"\n• Start: Daily brisk walk {daily_increase:.0f}min"
                    elif daily_increase <= 30:
                        description += f"\n• Plan: Walk 20min + swim/cycle {daily_increase-20:.0f}min"
                    else:
                        description += f"\n• Plan: Walk 30min + other exercises {daily_increase-30:.0f}min"

                    description += f"\n• Activity Mix:"
                    description += f"\n  - Walking/jogging: {increase*0.4:.0f}min/week"
                    description += f"\n  - Swimming: {increase*0.3:.0f}min/week"
                    description += f"\n  - Cycling: {increase*0.2:.0f}min/week"
                    description += f"\n  - Tai Chi/Yoga: {increase*0.1:.0f}min/week"

                    # Progressive plan
                    weeks_to_target = max(4, int(increase / 30))
                    description += f"\n\nProgressive plan ({weeks_to_target}-week target):"
                    for week in range(1, min(weeks_to_target + 1, 5)):
                        weekly_target = original_val + (increase * week / weeks_to_target)
                        description += f"\nWeek {week}: {weekly_target:.0f}min/week"

                target_change = f"Moderate exercise: {original_val:.0f}min/week → {target_val:.0f}min/week"
                expected_impact = f"Every 30min/week increase reduces sarcopenia risk by 5-8%, muscle strength improves 10-15%"
            else:
                title = "中等强度运动精确计划"
                description = f"当前每周: {original_val:.0f}分钟 → 目标: {target_val:.0f}分钟"
                if target_val > original_val:
                    increase = target_val - original_val
                    daily_increase = increase / 7
                    description += f"\n• 增加: {increase:.0f} 分钟/周 (每天{daily_increase:.0f}分钟)"

                    # 具体的运动建议
                    if daily_increase <= 15:
                        description += f"\n• 开始: 每天快走{daily_increase:.0f}分钟"
                    elif daily_increase <= 30:
                        description += f"\n• 方案: 快走20分钟 + 游泳/骑车{daily_increase-20:.0f}分钟"
                    else:
                        description += f"\n• 方案: 快走30分钟 + 其他运动{daily_increase-30:.0f}分钟"

                    description += f"\n• 活动组合:"
                    description += f"\n  - 快走/慢跑: {increase*0.4:.0f}分钟/周"
                    description += f"\n  - 游泳: {increase*0.3:.0f}分钟/周"
                    description += f"\n  - 骑车: {increase*0.2:.0f}分钟/周"
                    description += f"\n  - 太极/瑜伽: {increase*0.1:.0f}分钟/周"

                    # 渐进式计划
                    weeks_to_target = max(4, int(increase / 30))
                    description += f"\n\n渐进式计划({weeks_to_target}周达标):"
                    for week in range(1, min(weeks_to_target + 1, 5)):
                        weekly_target = original_val + (increase * week / weeks_to_target)
                        description += f"\n第{week}周:{weekly_target:.0f}分钟/周"

                target_change = f"中等强度运动: {original_val:.0f}分钟/周 → {target_val:.0f}分钟/周"
                expected_impact = f"每增加30分钟/周,肌少症风险降低约5-8%,肌肉力量提升10-15%"

        elif feature == 'Vigorous_MET_Ratio':
            if language == 'en':
                title = "High-Intensity Exercise Precision Enhancement Plan"
                description = f"Current ratio: {original_val:.3f} → Target ratio: {target_val:.3f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    description += f"\n📈 Need to increase high-intensity exercise ratio by {increase:.3f}"

                    # Convert to actual time recommendations
                    weekly_minutes = increase * 150  # Based on 150min/week baseline
                    daily_minutes = weekly_minutes / 7
                    description += f"\n⏱️ Equivalent to adding {weekly_minutes:.0f} min/week high-intensity exercise"
                    description += f"\n   (about {daily_minutes:.0f} min/day)"

                    # Specific high-intensity exercise plans
                    description += f"\n🔥 Recommended high-intensity exercise combination:"
                    if weekly_minutes <= 60:
                        description += f"\n  • Strength training: 3x/week, {weekly_minutes/3:.0f}min each"
                        description += f"\n  • HIIT training: 2x/week, {weekly_minutes/4:.0f}min each"
                    elif weekly_minutes <= 120:
                        description += f"\n  • Strength training: 3x/week, 25min each"
                        description += f"\n  • Running/sprints: 2x/week, {(weekly_minutes-75)/2:.0f}min each"
                        description += f"\n  • HIIT training: 2x/week, 15min each"
                    else:
                        description += f"\n  • Strength training: 4x/week, 30min each"
                        description += f"\n  • Running: 3x/week, {(weekly_minutes-120)/3:.0f}min each"
                        description += f"\n  • HIIT training: 2x/week, 20min each"

                    # Safety reminders and progressive plan
                    description += f"\n⚠️ Safety reminders:"
                    description += f"\n  • Warm up thoroughly for 5-10 minutes before exercise"
                    description += f"\n  • Cool down and stretch for 10 minutes after exercise"
                    description += f"\n  • Progress gradually to avoid exercise injuries"

                    # Progressive intensity enhancement
                    weeks_to_target = max(6, int(weekly_minutes / 20))
                    description += f"\n📅 {weeks_to_target}-week progressive plan:"
                    for week in [1, 2, 4, weeks_to_target]:
                        if week <= weeks_to_target:
                            weekly_target = weekly_minutes * week / weeks_to_target
                            description += f"\n  Week {week}: {weekly_target:.0f}min/week high-intensity exercise"

                target_change = f"High-intensity exercise ratio: {original_val:.3f}{target_val:.3f}"
                expected_impact = f"Every 0.1 increase in high-intensity ratio reduces sarcopenia risk by 10-15%, muscle strength improves 20-30%"
            else:
                title = "高强度运动精确提升计划"
                description = f"当前比例: {original_val:.3f} → 目标比例: {target_val:.3f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    description += f"\n📈 需要提升 {increase:.3f} 的高强度运动比例"

                    # 转换为实际时间建议
                    weekly_minutes = increase * 150  # 假设基于150分钟/周的基础
                    daily_minutes = weekly_minutes / 7
                    description += f"\n⏱️ 相当于每周增加 {weekly_minutes:.0f} 分钟高强度运动"
                    description += f"\n   (每天约 {daily_minutes:.0f} 分钟)"

                    # 具体的高强度运动计划
                    description += f"\n🔥 推荐高强度运动组合:"
                    if weekly_minutes <= 60:
                        description += f"\n  • 力量训练:3次/周,每次{weekly_minutes/3:.0f}分钟"
                        description += f"\n  • HIIT训练:2次/周,每次{weekly_minutes/4:.0f}分钟"
                    elif weekly_minutes <= 120:
                        description += f"\n  • 力量训练:3次/周,每次25分钟"
                        description += f"\n  • 跑步/冲刺:2次/周,每次{(weekly_minutes-75)/2:.0f}分钟"
                        description += f"\n  • HIIT训练:2次/周,每次15分钟"
                    else:
                        description += f"\n  • 力量训练:4次/周,每次30分钟"
                        description += f"\n  • 跑步:3次/周,每次{(weekly_minutes-120)/3:.0f}分钟"
                        description += f"\n  • HIIT训练:2次/周,每次20分钟"

                    # 安全提醒和渐进计划
                    description += f"\n⚠️ 安全提醒:"
                    description += f"\n  • 运动前充分热身5-10分钟"
                    description += f"\n  • 运动后拉伸放松10分钟"
                    description += f"\n  • 循序渐进,避免运动损伤"

                    # 渐进式强度提升
                    weeks_to_target = max(6, int(weekly_minutes / 20))
                    description += f"\n📅 {weeks_to_target}周渐进计划:"
                    for week in [1, 2, 4, weeks_to_target]:
                        if week <= weeks_to_target:
                            weekly_target = weekly_minutes * week / weeks_to_target
                            description += f"\n  第{week}周:{weekly_target:.0f}分钟/周高强度运动"

                target_change = f"高强度运动比例: {original_val:.3f}{target_val:.3f}"
                expected_impact = f"高强度运动比例每提升0.1,肌少症风险降低10-15%,肌肉力量提升20-30%"

        elif feature == 'Activity_Sedentary_Ratio':
            if language == 'en':
                title = "Sedentary Behavior Precision Improvement Plan"
                description = f"Current activity/sedentary ratio: {original_val:.3f} → Target ratio: {target_val:.3f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    # Assuming 16 hours of waking time
                    daily_activity_increase = increase * 16 * 60  # Convert to minutes
                    description += f"\n📈 Need to improve activity/sedentary ratio by {increase:.3f}"
                    description += f"\n⏱️ Equivalent to increasing daily activity by {daily_activity_increase:.0f} minutes"

                    # Specific activity increase strategies
                    description += f"\n🎯 Activity increase strategies:"
                    if daily_activity_increase <= 30:
                        description += f"\n  • Stand and move for 3-5 minutes every hour"
                        description += f"\n  • Take stairs instead of elevators"
                        description += f"\n  • Stand during phone calls/meetings"
                    elif daily_activity_increase <= 60:
                        description += f"\n  • Stand and move for 5 minutes every 45 minutes"
                        description += f"\n  • Take a 15-minute walk during lunch break"
                        description += f"\n  • Use standing desk for 2-3 hours"
                        description += f"\n  • Park farther away/get off transit early to walk"
                    else:
                        description += f"\n  • Stand and move for 5 minutes every 30 minutes"
                        description += f"\n  • Walk/bike to work for 30 minutes"
                        description += f"\n  • Use standing desk for 4-6 hours"
                        description += f"\n  • Actively engage in household activities"

                    # Different strategies for weekdays and weekends
                    description += f"\n📅 Time-specific strategies:"
                    description += f"\n  Weekdays:"
                    description += f"\n    • Set 30-minute activity reminders"
                    description += f"\n    • Do stretching exercises between meetings"
                    description += f"\n    • Take 10-15 minute walks after lunch"
                    description += f"\n  Weekends:"
                    description += f"\n    • Increase outdoor activities to {daily_activity_increase*1.5:.0f} minutes"
                    description += f"\n    • Engage in housework, gardening, walking shopping"
                    description += f"\n    • Reduce TV/phone screen time"

                    # Practical tools recommendations
                    description += f"\n🛠️ Practical tools:"
                    description += f"\n  • Set sedentary reminders on phone"
                    description += f"\n  • Use pedometer/fitness tracker"
                    description += f"\n  • Adjustable height desk"
                    description += f"\n  • Exercise ball instead of office chair"

                target_change = f"Activity/sedentary ratio: {original_val:.3f}{target_val:.3f}"
                expected_impact = f"Every 0.1 increase in activity ratio reduces sarcopenia risk by 6-10%, metabolism improves 15-20%"
            else:
                title = "久坐行为精确改善计划"
                description = f"当前活动/久坐比例: {original_val:.3f} → 目标比例: {target_val:.3f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    # 假设16小时清醒时间
                    daily_activity_increase = increase * 16 * 60  # 转换为分钟
                    description += f"\n📈 需要提升 {increase:.3f} 的活动/久坐比例"
                    description += f"\n⏱️ 相当于每天增加活动 {daily_activity_increase:.0f} 分钟"

                    # 具体的活动增加策略
                    description += f"\n🎯 活动增加策略:"
                    if daily_activity_increase <= 30:
                        description += f"\n  • 每小时起身活动3-5分钟"
                        description += f"\n  • 走楼梯代替电梯"
                        description += f"\n  • 站立接电话/开会"
                    elif daily_activity_increase <= 60:
                        description += f"\n  • 每45分钟起身活动5分钟"
                        description += f"\n  • 午休时间散步15分钟"
                        description += f"\n  • 使用站立办公桌2-3小时"
                        description += f"\n  • 远距离停车/提前下车步行"
                    else:
                        description += f"\n  • 每30分钟起身活动5分钟"
                        description += f"\n  • 上下班步行/骑车30分钟"
                        description += f"\n  • 站立办公4-6小时"
                        description += f"\n  • 主动做家务活动"

                    # 工作日和周末的不同策略
                    description += f"\n📅 分时段策略:"
                    description += f"\n  工作日:"
                    description += f"\n    • 设置每30分钟活动提醒"
                    description += f"\n    • 会议间隙做伸展运动"
                    description += f"\n    • 午餐后散步10-15分钟"
                    description += f"\n  周末:"
                    description += f"\n    • 户外活动增加到{daily_activity_increase*1.5:.0f}分钟"
                    description += f"\n    • 家务活动、园艺、购物步行"
                    description += f"\n    • 减少看电视/手机时间"

                    # 实用工具推荐
                    description += f"\n🛠️ 实用工具:"
                    description += f"\n  • 手机设置久坐提醒"
                    description += f"\n  • 使用计步器/智能手环"
                    description += f"\n  • 可调节高度办公桌"
                    description += f"\n  • 瑜伽球代替办公椅"

                target_change = f"活动/久坐比例: {original_val:.3f}{target_val:.3f}"
                expected_impact = f"活动比例每提升0.1,肌少症风险降低6-10%,新陈代谢提升15-20%"

        elif feature == 'WWI':
            if language == 'en':
                title = "Core-Focused Waist Management Plan"
                description = f"Current WWI: {original_val:.2f} → Target WWI: {target_val:.2f}"
                if original_val > target_val:
                    decrease = original_val - target_val
                    # WWI = waist/height^0.5, assuming height 1.7m
                    waist_reduction = decrease * (1.7 ** 0.5)
                    description += f"\n📉 Need to reduce WWI by {decrease:.2f}"
                    description += f"\n📏 Equivalent to waist reduction of approximately {waist_reduction:.1f} cm"
                    description += f"\n💪 Exercise recommendations:"
                    description += f"\n  • Core strengthening: Planks, crunches, Russian twists"
                    description += f"\n  • Aerobic exercise: Focus on fat burning"
                    description += f"\n  • HIIT training: Target abdominal fat reduction"
                target_change = f"WWI: {original_val:.2f}{target_val:.2f}"
                expected_impact = f"Every 0.5 WWI reduction decreases sarcopenia risk by 7-12%"
            else:
                title = "核心运动腰围精确管理计划"
                description = f"当前WWI: {original_val:.2f} → 目标WWI: {target_val:.2f}"
                if original_val > target_val:
                    decrease = original_val - target_val
                    # WWI = 腰围/身高^0.5,假设身高1.7m
                    waist_reduction = decrease * (1.7 ** 0.5)
                    description += f"\n📉 需要减少WWI {decrease:.2f}"
                    description += f"\n📏 相当于腰围减少约 {waist_reduction:.1f} 厘米"
                    description += f"\n💪 运动建议:"
                    description += f"\n  • 核心训练:平板支撑、卷腹、俄式转体"
                    description += f"\n  • 有氧运动:专注脂肪燃烧"
                    description += f"\n  • HIIT训练:针对腹部脂肪减少"
                target_change = f"WWI: {original_val:.2f}{target_val:.2f}"
                expected_impact = f"WWI每降低0.5,肌少症风险降低约7-12%"

        elif feature == 'Activity_Diversity_Index':
            if language == 'en':
                title = "Exercise Diversity Precision Enhancement Plan"
                description = f"Current diversity index: {original_val:.1f} → Target: {target_val:.1f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    target_types = int(target_val) + 2
                    description += f"\n📈 Need to increase activity diversity by {increase:.1f}"
                    description += f"\n🎯 Goal: Engage in {target_types} different types of exercise weekly"

                    # Exercise type classification and recommendations
                    description += f"\n🏃‍♂️ Recommended exercise type combinations:"
                    description += f"\n  Aerobic exercises (2-3 types):"
                    description += f"\n    • Brisk walking/jogging - 3-4x/week, 30min each"
                    description += f"\n    • Swimming/water exercise - 2x/week, 45min each"
                    description += f"\n    • Cycling - 2-3x/week, 40min each"

                    description += f"\n  💪 Strength training (1-2 types):"
                    description += f"\n    • Weight training - 2-3x/week, 45min each"
                    description += f"\n    • Bodyweight training - 3x/week, 30min each"
                    description += f"\n    • Resistance band training - 2x/week, 25min each"

                    description += f"\n  🧘‍♀️ Flexibility & balance (1-2 types):"
                    description += f"\n    • Yoga - 2-3x/week, 60min each"
                    description += f"\n    • Tai Chi - 2x/week, 45min each"
                    description += f"\n    • Pilates - 2x/week, 50min each"

                    description += f"\n  🏐 Recreational sports (1 type):"
                    description += f"\n    • Ball sports - 1-2x/week"
                    description += f"\n    • Dancing - 1-2x/week"
                    description += f"\n    • Hiking/mountain climbing - 1x/week"

                    # Weekly plan example
                    description += f"\n📅 Diverse weekly plan example:"
                    description += f"\n  Monday: Strength training (45min)"
                    description += f"\n  Tuesday: Brisk walking (30min) + Yoga (30min)"
                    description += f"\n  Wednesday: Swimming (45min)"
                    description += f"\n  Thursday: Bodyweight training (30min) + Tai Chi (30min)"
                    description += f"\n  Friday: Cycling (40min)"
                    description += f"\n  Saturday: Ball sports (60min)"
                    description += f"\n  Sunday: Hiking/climbing (90min)"

                    # Progressive increase recommendations
                    description += f"\n🔄 Progressive increase strategy:"
                    current_types = max(1, int(original_val))
                    for week in range(1, 5):
                        week_types = min(current_types + week, target_types)
                        description += f"\n  Week {week}: {week_types} exercise types"

                target_change = f"Activity diversity: {original_val:.1f}{target_val:.1f}"
                expected_impact = f"Every 1-point increase in exercise diversity reduces sarcopenia risk by 4-8%, whole-body coordination improves 25%"
            else:
                title = "运动多样性精确提升计划"
                description = f"当前多样性指数: {original_val:.1f} → 目标: {target_val:.1f}"
                if target_val > original_val:
                    increase = target_val - original_val
                    target_types = int(target_val) + 2
                    description += f"\n📈 需要增加 {increase:.1f} 的活动多样性"
                    description += f"\n🎯 目标:每周进行 {target_types} 种不同类型的运动"

                    # 运动类型分类和建议
                    description += f"\n🏃‍♂️ 推荐运动类型组合:"
                    description += f"\n  有氧运动类 (2-3种):"
                    description += f"\n    • 快走/慢跑 - 每周3-4次,每次30分钟"
                    description += f"\n    • 游泳/水中运动 - 每周2次,每次45分钟"
                    description += f"\n    • 骑自行车 - 每周2-3次,每次40分钟"

                    description += f"\n  💪 力量训练类 (1-2种):"
                    description += f"\n    • 器械训练 - 每周2-3次,每次45分钟"
                    description += f"\n    • 自重训练 - 每周3次,每次30分钟"
                    description += f"\n    • 弹力带训练 - 每周2次,每次25分钟"

                    description += f"\n  🧘‍♀️ 柔韧平衡类 (1-2种):"
                    description += f"\n    • 瑜伽 - 每周2-3次,每次60分钟"
                    description += f"\n    • 太极 - 每周2次,每次45分钟"
                    description += f"\n    • 普拉提 - 每周2次,每次50分钟"

                    description += f"\n  🏐 趣味运动类 (1种):"
                    description += f"\n    • 球类运动 - 每周1-2次"
                    description += f"\n    • 舞蹈 - 每周1-2次"
                    description += f"\n    • 爬山/徒步 - 每周1次"

                    # 周计划示例
                    description += f"\n📅 多样性周计划示例:"
                    description += f"\n  周一:力量训练 (45分钟)"
                    description += f"\n  周二:快走 (30分钟) + 瑜伽 (30分钟)"
                    description += f"\n  周三:游泳 (45分钟)"
                    description += f"\n  周四:自重训练 (30分钟) + 太极 (30分钟)"
                    description += f"\n  周五:骑车 (40分钟)"
                    description += f"\n  周六:球类运动 (60分钟)"
                    description += f"\n  周日:徒步/爬山 (90分钟)"

                    # 渐进式增加建议
                    description += f"\n🔄 渐进式增加策略:"
                    current_types = max(1, int(original_val))
                    for week in range(1, 5):
                        week_types = min(current_types + week, target_types)
                        description += f"\n  第{week}周:{week_types}种运动类型"

                target_change = f"活动多样性: {original_val:.1f}{target_val:.1f}"
                expected_impact = f"运动多样性每提升1点,肌少症风险降低4-8%,全身协调性提升25%"

        elif feature == 'sedentary_minutes':
            if language == 'en':
                title = "Daily Sedentary Time Precision Control Plan"
                description = f"Current daily sedentary: {original_val:.0f}min → Target: {target_val:.0f}min"
                if original_val > target_val:
                    decrease = original_val - target_val
                    hours_decrease = decrease / 60
                    description += f"\n📉 Need to reduce daily sedentary time by {decrease:.0f} minutes ({hours_decrease:.1f} hours)"

                    # Time-segmented reduction strategies
                    description += f"\n🕐 Time-segmented reduction strategies:"
                    if decrease <= 60:
                        description += f"\n  • Stand and move for 5 minutes every hour"
                        description += f"\n  • Stand or walk during phone meetings"
                        description += f"\n  • Stand for 10 minutes after meals"
                    elif decrease <= 120:
                        description += f"\n  • Stand and move for 5-8 minutes every 45 minutes"
                        description += f"\n  • Take 15-20 minute walks during lunch break"
                        description += f"\n  • Do simple exercises while watching TV"
                        description += f"\n  • Use standing desk for 1-2 hours"
                    else:
                        description += f"\n  • Stand and move for 5-10 minutes every 30 minutes"
                        description += f"\n  • Walk/bike to work instead of driving"
                        description += f"\n  • Use standing desk for 3-4 hours"
                        description += f"\n  • Actively take on tasks requiring movement"

                    # Specific alternative activities
                    description += f"\n🚶‍♂️ Sedentary replacement activities:"
                    description += f"\n  Work hours:"
                    description += f"\n    • Stand during meetings/phone calls"
                    description += f"\n    • Walk to colleagues' desks for communication"
                    description += f"\n    • Take stairs instead of elevators"
                    description += f"\n    • Walk farther for water/restroom breaks"
                    description += f"\n  Leisure time:"
                    description += f"\n    • Stretch while watching TV"
                    description += f"\n    • Do housework while listening to music"
                    description += f"\n    • Stand while reading/studying"
                    description += f"\n    • Take walks instead of scrolling phone"

                    # Practical tools and reminders
                    description += f"\n🛠️ Practical tools and reminders:"
                    description += f"\n  • Set {30 if decrease > 120 else 45 if decrease > 60 else 60}-minute sedentary reminders on phone"
                    description += f"\n  • Use standing desk or adjustable desk"
                    description += f"\n  • Wear fitness tracker to monitor sedentary time"
                    description += f"\n  • Place reminder notes on desk"

                    # Progressive reduction plan
                    description += f"\n📅 4-week progressive reduction plan:"
                    for week in range(1, 5):
                        week_target = original_val - (decrease * week / 4)
                        daily_reduction = decrease * week / 4
                        description += f"\n  Week {week}: Daily sedentary {week_target:.0f}min (reduce {daily_reduction:.0f}min)"
            else:
                title = "每日久坐时间精确控制计划"
                description = f"当前每日久坐: {original_val:.0f}分钟 → 目标: {target_val:.0f}分钟"
                if original_val > target_val:
                    decrease = original_val - target_val
                    hours_decrease = decrease / 60
                    description += f"\n📉 需要每天减少久坐 {decrease:.0f} 分钟 ({hours_decrease:.1f}小时)"

                    # 分时段减少策略
                    description += f"\n🕐 分时段减少策略:"
                    if decrease <= 60:
                        description += f"\n  • 每小时起身活动5分钟"
                        description += f"\n  • 电话会议时站立或走动"
                        description += f"\n  • 用餐后站立10分钟"
                    elif decrease <= 120:
                        description += f"\n  • 每45分钟起身活动5-8分钟"
                        description += f"\n  • 午休时间散步15-20分钟"
                        description += f"\n  • 看电视时做简单运动"
                        description += f"\n  • 站立办公1-2小时"
                    else:
                        description += f"\n  • 每30分钟起身活动5-10分钟"
                        description += f"\n  • 上下班步行/骑车代替开车"
                        description += f"\n  • 站立办公3-4小时"
                        description += f"\n  • 主动承担需要走动的任务"

                    # 具体的替代活动
                    description += f"\n🚶‍♂️ 久坐替代活动:"
                    description += f"\n  工作时间:"
                    description += f"\n    • 站立开会/打电话"
                    description += f"\n    • 走到同事桌前交流"
                    description += f"\n    • 爬楼梯代替电梯"
                    description += f"\n    • 远距离取水/上厕所"
                    description += f"\n  休闲时间:"
                    description += f"\n    • 看电视时做拉伸"
                    description += f"\n    • 边听音乐边做家务"
                    description += f"\n    • 站立阅读/学习"
                    description += f"\n    • 散步代替刷手机"

                    # 实用工具和提醒
                    description += f"\n🛠️ 实用工具和提醒:"
                    description += f"\n  • 手机设置每{30 if decrease > 120 else 45 if decrease > 60 else 60}分钟久坐提醒"
                    description += f"\n  • 使用站立办公桌或升降桌"
                    description += f"\n  • 佩戴智能手环监测久坐"
                    description += f"\n  • 在办公桌放置提醒标语"

                    # 渐进式减少计划
                    description += f"\n📅 4周渐进减少计划:"
                    for week in range(1, 5):
                        week_target = original_val - (decrease * week / 4)
                        daily_reduction = decrease * week / 4
                        description += f"\n  第{week}周:每日久坐{week_target:.0f}分钟 (减少{daily_reduction:.0f}分钟)"
            target_change = f"每日久坐时间: {original_val:.0f}分钟 → {target_val:.0f}分钟"
            expected_impact = f"每日久坐时间每减少60分钟,肌少症风险降低约5-9%"

        else:
            title = f"{feature}优化计划"
            description = f"当前值: {original_val:.3f} → 目标值: {target_val:.3f}"
            target_change = f"{feature}: {original_val:.3f}{target_val:.3f}"
            expected_impact = "遵循专业指导,预期改善肌少症风险"

        return title, description, target_change, expected_impact
    
    def _get_recommendation_texts(self, language: str = "zh") -> Dict:
        """获取双语建议文本"""
        texts = {
            "zh": {
                "increase_vigorous": {
                    "title": "增加高强度运动",
                    "description": "每周至少进行75分钟高强度运动,如跑步、游泳或力量训练\n\n具体建议:\n• 跑步:每次20-30分钟,每周3次\n• 力量训练:每次45分钟,每周2次\n• 游泳:每次30分钟,每周2次",
                    "priority": "高",
                    "target_change": "高强度运动比例提升至0.3以上",
                    "expected_impact": "显著改善肌肉力量和心肺功能"
                },
                "increase_moderate": {
                    "title": "增加中等强度运动",
                    "description": "每周进行至少150分钟中等强度运动\n\n推荐活动:\n• 快走:每次30分钟,每周5次\n• 骑车:每次40分钟,每周3次\n• 太极:每次45分钟,每周2次",
                    "priority": "中",
                    "target_change": "中等强度运动增至200分钟/周",
                    "expected_impact": "提升整体体能和肌肉耐力"
                },
                "reduce_sedentary": {
                    "title": "减少久坐时间",
                    "description": "控制每日久坐时间,增加活动频率\n\n实施方案:\n• 每30分钟起身活动5分钟\n• 站立办公2-3小时\n• 步行会议和电话\n• 使用提醒工具",
                    "priority": "高",
                    "target_change": "久坐比例降至0.4以下",
                    "expected_impact": "改善肌肉活性,降低肌少症风险"
                },
                "weight_management": {
                    "title": "体重管理",
                    "description": "通过运动控制体重在健康范围\n\n目标设定:\n• BMI控制在18.5-24.9\n• 每周减重0.5-1公斤\n• 有氧运动300分钟/周\n• 力量训练3次/周",
                    "priority": "中",
                    "target_change": "BMI控制在18.5-24.9范围内",
                    "expected_impact": "减轻关节负担,改善身体成分"
                },
                "reduce_sedentary": {
                    "title": "减少久坐时间",
                    "description": "每小时起身活动5-10分钟,减少连续久坐时间",
                    "priority": "高",
                    "target_change": "久坐比例降至0.4以下",
                    "expected_impact": "改善肌肉活性,降低肌少症风险"
                },
                "increase_moderate": {
                    "title": "增加中等强度运动",
                    "description": "每周进行至少150分钟中等强度运动,如快走、骑车",
                    "priority": "中",
                    "target_change": "中等强度运动增至200分钟/周",
                    "expected_impact": "提升整体体能和肌肉耐力"
                },
                "weight_management": {
                    "title": "体重管理",
                    "description": "通过合理饮食和运动,维持健康体重",
                    "priority": "中",
                    "target_change": "BMI控制在18.5-24.9范围内",
                    "expected_impact": "减轻关节负担,改善身体成分"
                },
                "protein_intake": {
                    "title": "增加蛋白质摄入",
                    "description": "每日摄入1.2-1.6g/kg体重的优质蛋白质",
                    "priority": "高",
                    "target_change": "蛋白质摄入达到推荐标准",
                    "expected_impact": "促进肌肉合成,维持肌肉质量"
                },
                "regular_monitoring": {
                    "title": "定期健康监测",
                    "description": "每6个月进行一次肌肉质量和功能评估",
                    "priority": "中",
                    "target_change": "建立定期监测计划",
                    "expected_impact": "早期发现肌肉质量变化,及时调整干预策略"
                },
                "increase_diversity": {
                    "title": "增加运动多样性",
                    "description": "尝试多种不同类型的体力活动,如有氧运动、力量训练、柔韧性练习",
                    "priority": "高",
                    "target_change": "活动类型增加至4种以上",
                    "expected_impact": "全面改善身体功能,降低SarcoII风险"
                },
                "strength_training": {
                    "title": "加强力量训练",
                    "description": "每周进行2-3次力量训练,重点锻炼大肌群",
                    "priority": "高",
                    "target_change": "建立规律的力量训练计划",
                    "expected_impact": "增强肌肉力量,改善身体功能"
                },
                "increase_activity": {
                    "title": "增加体力活动",
                    "description": "每周至少进行150分钟中等强度或75分钟高强度运动",
                    "priority": "高",
                    "target_change": "达到WHO推荐的运动量标准",
                    "expected_impact": "全面改善身体健康状况"
                },
                "balanced_nutrition": {
                    "title": "均衡营养摄入",
                    "description": "确保充足的蛋白质、维生素D和钙的摄入",
                    "priority": "中",
                    "target_change": "建立健康的饮食习惯",
                    "expected_impact": "支持肌肉健康和骨骼强度"
                }
            },
            "en": {
                "increase_vigorous": {
                    "title": "Increase High-Intensity Exercise",
                    "description": "Engage in at least 75 minutes of vigorous exercise weekly\n\nSpecific recommendations:\n• Running: 20-30 minutes per session, 3 times weekly\n• Strength training: 45 minutes per session, 2 times weekly\n• Swimming: 30 minutes per session, 2 times weekly",
                    "priority": "High",
                    "target_change": "Increase vigorous exercise ratio to above 0.3",
                    "expected_impact": "Significantly improve muscle strength and cardiopulmonary function"
                },
                "reduce_sedentary": {
                    "title": "Reduce Sedentary Time",
                    "description": "Control daily sedentary time and increase activity frequency\n\nImplementation plan:\n• Stand and move for 5 minutes every 30 minutes\n• Use standing desk for 2-3 hours\n• Walking meetings and phone calls\n• Use reminder tools",
                    "priority": "High",
                    "target_change": "Reduce sedentary ratio to below 0.4",
                    "expected_impact": "Improve muscle activity and reduce sarcopenia risk"
                },
                "increase_moderate": {
                    "title": "Increase Moderate-Intensity Exercise",
                    "description": "Engage in at least 150 minutes of moderate exercise weekly\n\nRecommended activities:\n• Brisk walking: 30 minutes per session, 5 times weekly\n• Cycling: 40 minutes per session, 3 times weekly\n• Tai Chi: 45 minutes per session, 2 times weekly",
                    "priority": "Medium",
                    "target_change": "Increase moderate exercise to 200 minutes/week",
                    "expected_impact": "Enhance overall fitness and muscle endurance"
                },
                "weight_management": {
                    "title": "Weight Management",
                    "description": "Maintain healthy weight through balanced diet and exercise",
                    "priority": "Medium",
                    "target_change": "Keep BMI within 18.5-24.9 range",
                    "expected_impact": "Reduce joint burden and improve body composition"
                },
                "protein_intake": {
                    "title": "Increase Protein Intake",
                    "description": "Consume 1.2-1.6g/kg body weight of high-quality protein daily",
                    "priority": "High",
                    "target_change": "Meet recommended protein intake standards",
                    "expected_impact": "Promote muscle synthesis and maintain muscle mass"
                },
                "regular_monitoring": {
                    "title": "Regular Health Monitoring",
                    "description": "Conduct muscle mass and function assessment every 6 months",
                    "priority": "Medium",
                    "target_change": "Establish regular monitoring plan",
                    "expected_impact": "Early detection of muscle mass changes, timely intervention adjustment"
                },
                "increase_diversity": {
                    "title": "Increase Exercise Diversity",
                    "description": "Try various types of physical activities, such as aerobic exercise, strength training, and flexibility exercises",
                    "priority": "High",
                    "target_change": "Increase activity types to 4 or more",
                    "expected_impact": "Comprehensively improve body function and reduce SarcoII risk"
                },
                "strength_training": {
                    "title": "Strengthen Resistance Training",
                    "description": "Perform strength training 2-3 times per week, focusing on major muscle groups",
                    "priority": "High",
                    "target_change": "Establish regular strength training plan",
                    "expected_impact": "Enhance muscle strength and improve body function"
                },
                "increase_activity": {
                    "title": "Increase Physical Activity",
                    "description": "Engage in at least 150 minutes of moderate-intensity or 75 minutes of vigorous-intensity exercise weekly",
                    "priority": "High",
                    "target_change": "Meet WHO recommended physical activity standards",
                    "expected_impact": "Comprehensively improve overall health"
                },
                "balanced_nutrition": {
                    "title": "Balanced Nutrition Intake",
                    "description": "Ensure adequate intake of protein, vitamin D, and calcium",
                    "priority": "Medium",
                    "target_change": "Establish healthy eating habits",
                    "expected_impact": "Support muscle health and bone strength"
                }
            }
        }
        return texts

    def _generate_sarcoI_rule_recommendations(self, user_dict: Dict, language: str = "zh") -> List[RecommendationItem]:
        """生成SarcoI基于规则的建议"""
        recommendations = []
        texts = self._get_recommendation_texts(language)

        # 基于用户数据生成规则建议
        bmi = user_dict.get('body_mass_index', 25)
        sedentary_ratio = user_dict.get('Activity_Sedentary_Ratio', 0.5)
        moderate_minutes = user_dict.get('Total_Moderate_Minutes_week', 150)
        vigorous_ratio = user_dict.get('Vigorous_MET_Ratio', 0.2)

        if vigorous_ratio < 0.2:
            rec = texts[language]["increase_vigorous"]
            recommendations.append(RecommendationItem(
                title=rec["title"],
                description=rec["description"],
                priority=rec["priority"],
                target_change=rec["target_change"],
                expected_impact=rec["expected_impact"]
            ))

        if moderate_minutes < 150:
            rec = texts[language]["increase_moderate"]
            recommendations.append(RecommendationItem(
                title=rec["title"],
                description=rec["description"],
                priority=rec["priority"],
                target_change=rec["target_change"],
                expected_impact=rec["expected_impact"]
            ))

        if bmi > 25:
            rec = texts[language]["weight_management"]
            recommendations.append(RecommendationItem(
                title=rec["title"],
                description=rec["description"],
                priority=rec["priority"],
                target_change=rec["target_change"],
                expected_impact=rec["expected_impact"]
            ))
        
        return recommendations

    def _generate_maintenance_recommendations(self, user_dict: Dict, model_type: str, language: str = "zh") -> List[RecommendationItem]:
        """
        为低风险用户生成维持性建议

        Args:
            user_dict: 用户数据字典
            model_type: 模型类型 ('sarcoI' 或 'sarcoII')

        Returns:
            维持性建议列表
        """
        recommendations = []

        # 基础维持建议
        if language == 'en':
            recommendations.append(RecommendationItem(
                title="Maintain Current Health Status",
                description="Your current sarcopenia risk is low, continue maintaining your existing healthy lifestyle",
                priority="Medium",
                target_change="Maintain current exercise and dietary habits",
                expected_impact="Continue reducing sarcopenia risk, maintain muscle health"
            ))
        else:
            recommendations.append(RecommendationItem(
                title="保持当前健康状态",
                description="您当前的肌少症风险较低,建议继续保持现有的健康生活方式",
                priority="中",
                target_change="维持当前的运动和饮食习惯",
                expected_impact="持续降低肌少症风险,保持肌肉健康"
            ))

        # 基于当前活动水平的维持建议
        if model_type == 'sarcoI':
            current_moderate = user_dict.get('Total_Moderate_Minutes_week', 150)
            current_vigorous = user_dict.get('Vigorous_MET_Ratio', 0.2)

            if current_moderate >= 150:
                if language == 'en':
                    recommendations.append(RecommendationItem(
                        title="Continue Moderate-Intensity Exercise",
                        description=f"You currently engage in {current_moderate:.0f} minutes of moderate exercise weekly, continue maintaining this",
                        priority="Medium",
                        target_change="Maintain at least 150 minutes of moderate exercise weekly",
                        expected_impact="Maintain cardiopulmonary function and muscle endurance"
                    ))
                else:
                    recommendations.append(RecommendationItem(
                        title="继续中等强度运动",
                        description=f"您当前每周进行{current_moderate:.0f}分钟中等强度运动,建议继续保持",
                        priority="中",
                        target_change="维持每周至少150分钟中等强度运动",
                        expected_impact="保持心肺功能和肌肉耐力"
                    ))

            if current_vigorous >= 0.2:
                if language == 'en':
                    recommendations.append(RecommendationItem(
                        title="Maintain High-Intensity Exercise",
                        description="Your high-intensity exercise ratio is good, continue maintaining strength training and high-intensity exercise",
                        priority="Medium",
                        target_change="Maintain current high-intensity exercise level",
                        expected_impact="Maintain muscle mass and strength"
                    ))
                else:
                    recommendations.append(RecommendationItem(
                        title="保持高强度运动",
                        description="您的高强度运动比例良好,建议继续保持力量训练和高强度运动",
                        priority="中",
                        target_change="维持当前的高强度运动水平",
                        expected_impact="保持肌肉质量和力量"
                    ))

        # 预防性建议
        age = user_dict.get('age_years', 45)
        if age > 50:
            if language == 'en':
                recommendations.append(RecommendationItem(
                    title="Age-Related Prevention",
                    description="As you age, it's recommended to regularly monitor muscle mass and appropriately increase protein intake",
                    priority="Medium",
                    target_change="Conduct muscle mass assessment every 6 months",
                    expected_impact="Early detection of muscle mass changes, timely intervention adjustment"
                ))
            else:
                recommendations.append(RecommendationItem(
                    title="年龄相关预防",
                    description="随着年龄增长,建议定期监测肌肉质量,适当增加蛋白质摄入",
                    priority="中",
                    target_change="每6个月进行一次肌肉质量评估",
                    expected_impact="早期发现肌肉质量变化,及时调整干预策略"
                ))

        return recommendations

    def _generate_sarcoII_rule_recommendations(self, user_dict: Dict, language: str = "zh") -> List[RecommendationItem]:
        """生成SarcoII基于规则的建议"""
        recommendations = []
        texts = self._get_recommendation_texts(language)

        diversity_index = user_dict.get('Activity_Diversity_Index', 2)
        sedentary_minutes = user_dict.get('sedentary_minutes', 480)
        sedentary_ratio = user_dict.get('Activity_Sedentary_Ratio', 0.5)

        if diversity_index < 3:
            rec = texts[language]["increase_diversity"]
            recommendations.append(RecommendationItem(
                title=rec["title"],
                description=rec["description"],
                priority=rec["priority"],
                target_change=rec["target_change"],
                expected_impact=rec["expected_impact"]
            ))

        if sedentary_minutes > 480:
            rec = texts[language]["reduce_sedentary"]
            recommendations.append(RecommendationItem(
                title=rec["title"],
                description=rec["description"],
                priority=rec["priority"],
                target_change=rec["target_change"],
                expected_impact=rec["expected_impact"]
            ))
        
        if sedentary_ratio > 0.6:
            if language == 'en':
                recommendations.append(RecommendationItem(
                    title="Reduce Sedentary Activity Ratio",
                    description="Increase standing and light activity time, reduce sedentary activity proportion",
                    priority="Medium",
                    target_change="Reduce sedentary activity ratio to below 50%",
                    expected_impact="Improve daily activity level, promote muscle health"
                ))
            else:
                recommendations.append(RecommendationItem(
                    title="降低久坐活动比例",
                    description="增加站立和轻度活动时间,减少久坐活动占比",
                    priority="中",
                    target_change="久坐活动比例降至50%以下",
                    expected_impact="提高日常活动水平,促进肌肉健康"
                ))
        
        return recommendations
    
    def _generate_fallback_recommendations(self, user_dict: Dict, risk_types: List[str] = None, language: str = "zh") -> List[RecommendationItem]:
        """生成降级建议"""
        recommendations = []
        texts = self._get_recommendation_texts(language)

        # 基础建议
        rec = texts[language]["increase_activity"]
        recommendations.append(RecommendationItem(
            title=rec["title"],
            description=rec["description"],
            priority=rec["priority"],
            target_change=rec["target_change"],
            expected_impact=rec["expected_impact"]
        ))

        rec = texts[language]["increase_diversity"]
        recommendations.append(RecommendationItem(
            title=rec["title"],
            description=rec["description"],
            priority=rec["priority"],
            target_change=rec["target_change"],
            expected_impact=rec["expected_impact"]
        ))

        # 基于用户数据的个性化建议
        bmi = user_dict.get('body_mass_index', 25)
        if bmi > 25:
            if language == 'en':
                recommendations.append(RecommendationItem(
                    title="Weight Management",
                    description="Control weight through balanced diet and exercise, target BMI between 18.5-24.9",
                    priority="Medium",
                    target_change=f"Reduce weight to BMI below {bmi-2:.1f}",
                    expected_impact="Reduce sarcopenia risk, improve overall health"
                ))
            else:
                recommendations.append(RecommendationItem(
                    title="体重管理",
                    description="通过合理饮食和运动控制体重,目标BMI在18.5-24.9之间",
                    priority="中",
                    target_change=f"减重至BMI {bmi-2:.1f}以下",
                    expected_impact="降低肌少症风险,改善整体健康"
                ))

        sedentary_minutes = user_dict.get('sedentary_minutes', 480)
        if sedentary_minutes > 480:  # 超过8小时
            if language == 'en':
                recommendations.append(RecommendationItem(
                    title="Reduce Sedentary Time",
                    description="Stand and move for 5-10 minutes every hour, reduce continuous sitting time",
                    priority="Medium",
                    target_change="Control daily sedentary time within 8 hours",
                    expected_impact="Improve blood circulation, maintain muscle vitality"
                ))
            else:
                recommendations.append(RecommendationItem(
                    title="减少久坐时间",
                    description="每小时起身活动5-10分钟,减少连续久坐时间",
                    priority="中",
                    target_change="每日久坐时间控制在8小时以内",
                    expected_impact="改善血液循环,维持肌肉活力"
                ))

        return recommendations
    
    def _generate_basic_recommendations(self, language: str = "zh") -> List[RecommendationItem]:
        """生成基础建议"""
        if language == 'en':
            return [
                RecommendationItem(
                    title="Consult Professional Doctor",
                    description="Seek professional medical guidance and conduct detailed health assessment",
                    priority="High",
                    target_change="Obtain personalized medical advice",
                    expected_impact="Develop scientific health management plan"
                ),
                RecommendationItem(
                    title="Regular Exercise",
                    description="Maintain regular physical activity, including aerobic exercise and strength training",
                    priority="Medium",
                    target_change="Establish long-term exercise habits",
                    expected_impact="Maintain and improve physical health"
                )
            ]
        else:
            return [
                RecommendationItem(
                    title="咨询专业医生",
                    description="建议寻求专业医疗指导,进行详细的健康评估",
                    priority="高",
                    target_change="获得个性化医疗建议",
                    expected_impact="制定科学的健康管理方案"
                ),
                RecommendationItem(
                    title="规律运动",
                    description="保持规律的体力活动,包括有氧运动和力量训练",
                    priority="中",
                    target_change="建立长期运动习惯",
                    expected_impact="维持和改善身体健康"
                )
            ]
    
    def _generate_priority_actions(self, sarcoI_recs: List[RecommendationItem], 
                                 sarcoII_recs: List[RecommendationItem]) -> List[str]:
        """生成优先级行动列表"""
        actions = []
        
        # 收集高优先级建议
        for rec in sarcoI_recs + sarcoII_recs:
            if rec.priority == "高":
                actions.append(rec.title)
        
        # 如果没有高优先级建议,添加基础建议
        if not actions:
            actions = ["增加体力活动", "改善生活方式", "定期健康检查"]
        
        return actions[:3]  # 最多返回3个优先行动
    
    def _generate_target_metrics(self, user_dict: Dict, sarcoI_recs: List[RecommendationItem], 
                                sarcoII_recs: List[RecommendationItem]) -> Dict[str, Any]:
        """生成目标指标"""
        metrics = {}
        
        # 基于用户当前状态和建议生成目标
        current_bmi = user_dict.get('body_mass_index', 25)
        current_activity = user_dict.get('Total_Moderate_Minutes_week', 150)
        
        if current_bmi > 25:
            metrics['目标BMI'] = f"{current_bmi - 2:.1f} - {current_bmi - 1:.1f}"
        
        if current_activity < 150:
            metrics['每周运动时间'] = "150分钟以上"
        
        metrics['评估周期'] = "4-6周"
        metrics['下次检查'] = "3个月后"
        
        return metrics

# 创建全局建议服务实例
advisory_service = AdvisoryService()