Spaces:
Running
Running
File size: 11,429 Bytes
ad05511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
"""
安全模型加载器 - 从私有HF仓库加载模型
用于公开Space但保护模型文件
"""
import pickle
import pandas as pd
import numpy as np
import logging
import os
from pathlib import Path
from typing import Dict, Any, Optional
import warnings
warnings.filterwarnings('ignore')
# 安全模型加载 - 从私有HF仓库加载
try:
from huggingface_hub import hf_hub_download
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
print("⚠️ huggingface_hub未安装,将使用本地模型文件")
# 配置日志
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class SecureModelManager:
"""安全模型管理器 - 从私有HF仓库加载模型"""
def __init__(self):
"""初始化安全模型管理器"""
self.screening_models = {}
self.advisory_models = {}
self.thresholds = {}
# HF私有仓库配置
self.hf_repo_id = os.getenv("HF_MODEL_REPO", "YOUR_USERNAME/sarco-advisor-models")
self.hf_token = os.getenv("HF_TOKEN")
self.use_hf_models = HF_HUB_AVAILABLE and self.hf_token
if self.use_hf_models:
logger.info(f"🔒 使用HF私有仓库加载模型: {self.hf_repo_id}")
else:
logger.info("📁 回退到本地模型文件")
# 导入原始模型管理器作为备用
from .model_loader import ModelManager
self.fallback_manager = ModelManager()
# 加载所有模型
self.load_all_models()
def load_model_from_hf(self, model_path: str):
"""从HF私有仓库加载模型"""
try:
# 下载模型文件到临时位置
local_path = hf_hub_download(
repo_id=self.hf_repo_id,
filename=model_path,
token=self.hf_token,
cache_dir="/tmp/hf_models" # 临时缓存,不会被下载
)
# 加载模型
with open(local_path, 'rb') as f:
model = pickle.load(f)
logger.info(f"✅ 从HF仓库加载模型: {model_path}")
return model
except Exception as e:
logger.error(f"❌ HF模型加载失败 {model_path}: {str(e)}")
return None
def load_all_models(self):
"""加载所有模型"""
if self.use_hf_models:
self._load_models_from_hf()
else:
self._load_models_locally()
def _load_models_from_hf(self):
"""从HF私有仓库加载所有模型"""
logger.info("🔒 从HF私有仓库加载模型...")
# 模型文件映射
model_files = {
# 筛查模型
'sarcoI_screening': 'models/screening/sarcoI/randomforest_model.pkl',
# 建议模型
'sarcoI_advisory': 'models/advisory/sarcoI/CatBoost_model.pkl',
'sarcoII_advisory': 'models/advisory/sarcoII/RandomForest_model.pkl'
}
# 阈值文件
threshold_files = {
'sarcoI_screening': 'models/screening/sarcoI/optimization_results.pkl',
'sarcoII_screening': 'models/screening/sarcoII/optimization_results.pkl'
}
# 加载模型
for model_name, model_path in model_files.items():
model = self.load_model_from_hf(model_path)
if model:
if 'screening' in model_name:
model_type = model_name.replace('_screening', '')
self.screening_models[model_type] = model
elif 'advisory' in model_name:
model_type = model_name.replace('_advisory', '')
self.advisory_models[model_type] = model
# 加载阈值
for threshold_name, threshold_path in threshold_files.items():
threshold_data = self.load_model_from_hf(threshold_path)
if threshold_data:
model_type = threshold_name.replace('_screening', '')
# 解析阈值数据
if model_type == 'sarcoI':
if 'rf_best_threshold' in threshold_data:
self.thresholds[model_type] = {
'screening': threshold_data['rf_best_threshold'],
'advisory': 0.36 # 默认建议模型阈值
}
elif model_type == 'sarcoII':
if 'catboost_best_threshold' in threshold_data:
self.thresholds[model_type] = {
'screening': threshold_data['catboost_best_threshold'],
'advisory': 0.52 # 默认建议模型阈值
}
logger.info("✅ HF模型加载完成")
def _load_models_locally(self):
"""回退到本地模型加载"""
logger.info("📁 使用本地模型文件...")
if hasattr(self, 'fallback_manager'):
self.fallback_manager.load_all_models()
# 复制模型和阈值
self.screening_models = self.fallback_manager.screening_models
self.advisory_models = self.fallback_manager.advisory_models
self.thresholds = self.fallback_manager.thresholds
logger.info("✅ 本地模型加载完成")
def predict_screening(self, user_data: Dict, model_type: str) -> Dict:
"""筛查预测"""
if hasattr(self, 'fallback_manager') and not self.use_hf_models:
return self.fallback_manager.predict_screening(user_data, model_type)
# HF模型预测逻辑
if model_type not in self.screening_models:
raise ValueError(f"筛查模型 {model_type} 未找到")
model = self.screening_models[model_type]
threshold = self.thresholds.get(model_type, {}).get('screening', 0.5)
# 准备特征数据
if model_type == 'sarcoI':
features = ['age_years', 'WWI', 'body_mass_index']
else:
features = ['age_years', 'race_ethnicity', 'WWI', 'body_mass_index']
X = np.array([[user_data[f] for f in features]])
# 预测
probability = model.predict_proba(X)[0][1]
risk_level = 'high' if probability >= threshold else 'low'
return {
'probability': probability,
'risk_level': risk_level,
'threshold': threshold,
'model_type': model_type
}
def predict_advisory(self, user_data: Dict, model_type: str) -> Dict:
"""建议预测"""
if hasattr(self, 'fallback_manager') and not self.use_hf_models:
return self.fallback_manager.predict_advisory(user_data, model_type)
# HF模型预测逻辑
if model_type not in self.advisory_models:
raise ValueError(f"建议模型 {model_type} 未找到")
model = self.advisory_models[model_type]
threshold = self.thresholds.get(model_type, {}).get('advisory', 0.5)
# 准备特征数据(简化版本)
if model_type == 'sarcoI':
features = ['body_mass_index', 'race_ethnicity', 'WWI', 'age_years',
'Activity_Sedentary_Ratio', 'Total_Moderate_Minutes_week', 'Vigorous_MET_Ratio']
else:
features = ['body_mass_index', 'race_ethnicity', 'age_years', 'Activity_Sedentary_Ratio',
'Activity_Diversity_Index', 'WWI', 'Vigorous_MET_Ratio', 'sedentary_minutes']
# 检查特征是否存在
available_features = []
for f in features:
if f in user_data:
available_features.append(user_data[f])
else:
available_features.append(0.0) # 默认值
X = np.array([available_features])
# 预测
probability = model.predict_proba(X)[0][1]
risk_level = 'high' if probability >= threshold else 'low'
return {
'probability': probability,
'risk_level': risk_level,
'threshold': threshold,
'model_type': model_type
}
def get_comprehensive_risk(self, sarcoI_screening_result: Dict, sarcoI_advisory_result: Dict = None,
sarcoII_screening_result: Dict = None, sarcoII_advisory_result: Dict = None) -> Dict:
"""综合风险评估"""
if hasattr(self, 'fallback_manager') and not self.use_hf_models:
return self.fallback_manager.get_comprehensive_risk(
sarcoI_screening_result, sarcoI_advisory_result,
sarcoII_screening_result, sarcoII_advisory_result
)
# 使用与原始模型管理器相同的逻辑
results = {}
# SarcoI 综合风险判定
if sarcoI_screening_result:
P_recall_I = sarcoI_screening_result['probability']
P_precision_I = sarcoI_advisory_result['probability'] if sarcoI_advisory_result else 0.0
sarcoI_advisory_threshold = self.thresholds.get('sarcoI', {}).get('advisory', 0.36)
sarcoI_screening_threshold = self.thresholds.get('sarcoI', {}).get('screening', 0.23)
if P_precision_I >= sarcoI_advisory_threshold:
sarcoI_comprehensive_risk = "high"
sarcoI_risk_reason = "advisory_model_high_risk"
elif P_recall_I >= sarcoI_screening_threshold:
sarcoI_comprehensive_risk = "medium"
sarcoI_risk_reason = "screening_model_risk"
else:
sarcoI_comprehensive_risk = "low"
sarcoI_risk_reason = "both_models_low_risk"
results['sarcoI'] = {
'comprehensive_risk': sarcoI_comprehensive_risk,
'screening_probability': P_recall_I,
'advisory_probability': P_precision_I,
'risk_reason': sarcoI_risk_reason
}
# SarcoII 综合风险判定
if sarcoII_screening_result:
P_recall_II = sarcoII_screening_result['probability']
P_precision_II = sarcoII_advisory_result['probability'] if sarcoII_advisory_result else 0.0
sarcoII_advisory_threshold = self.thresholds.get('sarcoII', {}).get('advisory', 0.52)
sarcoII_screening_threshold = self.thresholds.get('sarcoII', {}).get('screening', 0.15)
if P_precision_II >= sarcoII_advisory_threshold:
sarcoII_comprehensive_risk = "high"
sarcoII_risk_reason = "advisory_model_high_risk"
elif P_recall_II >= sarcoII_screening_threshold:
sarcoII_comprehensive_risk = "medium"
sarcoII_risk_reason = "screening_model_risk"
else:
sarcoII_comprehensive_risk = "low"
sarcoII_risk_reason = "both_models_low_risk"
results['sarcoII'] = {
'comprehensive_risk': sarcoII_comprehensive_risk,
'screening_probability': P_recall_II,
'advisory_probability': P_precision_II,
'risk_reason': sarcoII_risk_reason
}
return results
|