Spaces:
Sleeping
Sleeping
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import numpy as np | |
import cv2 | |
import json | |
import trimesh | |
from collections import deque, defaultdict | |
from scipy.cluster.hierarchy import linkage, fcluster | |
from data_utils.pyrender_wrapper import PyRenderWrapper | |
from data_utils.data_loader import DataLoader | |
def save_mesh(vertices, faces, filename): | |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces) | |
mesh.export(filename, file_type='obj') | |
def pred_joints_and_bones(bone_coor): | |
""" | |
get joints (j,3) and bones (b,2) from (b,2,3), preserve the parent-child relationship | |
""" | |
parent_coords = bone_coor[:, 0, :] # (b, 3) | |
child_coords = bone_coor[:, 1, :] # (b, 3) | |
all_coords = np.vstack([parent_coords, child_coords]) # (2b, 3) | |
pred_joints, indices = np.unique(all_coords, axis=0, return_inverse=True) | |
b = bone_coor.shape[0] | |
parent_indices = indices[:b] | |
child_indices = indices[b:] | |
pred_bones = np.column_stack([parent_indices, child_indices]) | |
return pred_joints, pred_bones | |
def remove_duplicate_joints(joints, bones, root_index=None): | |
coord_to_indices = {} | |
for idx, coord in enumerate(joints): | |
key = tuple(coord) | |
coord_to_indices.setdefault(key, []).append(idx) | |
representative = {} # old_index -> rep_index | |
for coord, idx_list in coord_to_indices.items(): | |
rep = idx_list[0] | |
for idx in idx_list: | |
representative[idx] = rep | |
remapped_bones_set = set() | |
for parent_old, child_old in bones: | |
p_rep = representative[parent_old] | |
c_rep = representative[child_old] | |
# remove self connected bones | |
if p_rep != c_rep: | |
remapped_bones_set.add((p_rep, c_rep)) | |
remapped_bones = list(remapped_bones_set) | |
used_indices = set() | |
for p_rep, c_rep in remapped_bones: | |
used_indices.add(p_rep) | |
used_indices.add(c_rep) | |
if root_index is not None: | |
root_rep = representative[root_index] | |
used_indices.add(root_rep) | |
used_indices = sorted(used_indices) | |
# old index --> new index | |
old_to_new = {} | |
for new_idx, old_idx in enumerate(used_indices): | |
old_to_new[old_idx] = new_idx | |
# get new joints | |
new_joints = np.array([joints[old_idx] for old_idx in used_indices], dtype=joints.dtype) | |
# get new bones | |
new_bones = [] | |
for p_rep, c_rep in remapped_bones: | |
p_new = old_to_new[p_rep] | |
c_new = old_to_new[c_rep] | |
new_bones.append((p_new, c_new)) | |
if root_index is not None: | |
new_root_index = old_to_new[root_rep] | |
new_bones = np.array(new_bones, dtype=int) | |
if root_index is not None: | |
return new_joints, new_bones, new_root_index | |
else: | |
return new_joints, new_bones | |
def save_skeleton_to_txt(pred_joints, pred_bones, pred_root_index, hier_order, vertices, filename='skeleton.txt'): | |
""" | |
save skeleton to txt file, the format follows Rignet (joints, root, hier) | |
if hier_order: the first joint index in bone is root joint index, and parent-child relationship is established in bones. | |
else: we set the joint nearest to the mesh center as the root joint, and then build hierarchy starting from root. | |
""" | |
num_joints = pred_joints.shape[0] | |
# assign joint names | |
joint_names = [f'joint{i}' for i in range(num_joints)] | |
adjacency = defaultdict(list) | |
for bone in pred_bones: | |
idx_a, idx_b = bone | |
adjacency[idx_a].append(idx_b) | |
adjacency[idx_b].append(idx_a) | |
# find root joint | |
if hier_order: | |
root_idx = pred_root_index | |
else: | |
centroid = np.mean(vertices, axis=0) | |
distances = np.linalg.norm(pred_joints - centroid, axis=1) | |
root_idx = np.argmin(distances) | |
root_name = joint_names[root_idx] | |
# build hierarchy | |
parent_map = {} | |
if hier_order: | |
visited = set() | |
for parent_idx, child_idx in pred_bones: | |
if child_idx not in parent_map: | |
parent_map[child_idx] = parent_idx | |
visited.add(child_idx) | |
visited.add(parent_idx) | |
parent_map[root_idx] = None | |
else: | |
visited = set([root_idx]) | |
queue = deque([root_idx]) | |
parent_map[root_idx] = None | |
while queue: | |
current_idx = queue.popleft() | |
for neighbor_idx in adjacency[current_idx]: | |
if neighbor_idx not in visited: | |
parent_map[neighbor_idx] = current_idx | |
visited.add(neighbor_idx) | |
queue.append(neighbor_idx) | |
if len(visited) != num_joints: | |
print(f"bones are not fully connected, leaving {num_joints - len(visited)} joints unconnected.") | |
# save joints | |
joints_lines = [] | |
for idx, coord in enumerate(pred_joints): | |
name = joint_names[idx] | |
joints_line = f'joints {name} {coord[0]:.8f} {coord[1]:.8f} {coord[2]:.8f}' | |
joints_lines.append(joints_line) | |
# save root name | |
root_line = f'root {root_name}' | |
# save hierarchy | |
hier_lines = [] | |
for child_idx, parent_idx in parent_map.items(): | |
if parent_idx is not None: | |
parent_name = joint_names[parent_idx] | |
child_name = joint_names[child_idx] | |
hier_line = f'hier {parent_name} {child_name}' | |
hier_lines.append(hier_line) | |
with open(filename, 'w') as file: | |
for line in joints_lines: | |
file.write(line + '\n') | |
file.write(root_line + '\n') | |
for line in hier_lines: | |
file.write(line + '\n') | |
def save_skeleton_obj(joints, bones, save_path, root_index=None, radius_sphere=0.01, | |
radius_bone=0.005, segments=16, stacks=16, use_cone=False): | |
""" | |
Save skeletons to obj file, each connection contains two red spheres (joint) and one blue cylinder (bone). | |
if root index is known, set root sphere to green. | |
""" | |
all_vertices = [] | |
all_colors = [] | |
all_faces = [] | |
vertex_offset = 0 | |
# create spheres for joints | |
for i, joint in enumerate(joints): | |
# define color | |
if root_index is not None and i == root_index: | |
color = (0, 1, 0) # green for root joint | |
else: | |
color = (1, 0, 0) # red for other joints | |
# create joint sphere | |
sphere_vertices, sphere_faces = create_sphere(joint, radius=radius_sphere, segments=segments, stacks=stacks) | |
all_vertices.extend(sphere_vertices) | |
all_colors.extend([color] * len(sphere_vertices)) | |
# adjust face index | |
adjusted_sphere_faces = [(v1 + vertex_offset, v2 + vertex_offset, v3 + vertex_offset) for (v1, v2, v3) in sphere_faces] | |
all_faces.extend(adjusted_sphere_faces) | |
vertex_offset += len(sphere_vertices) | |
# create bones | |
for bone in bones: | |
parent_idx, child_idx = bone | |
parent = joints[parent_idx] | |
child = joints[child_idx] | |
try: | |
bone_vertices, bone_faces = create_bone(parent, child, radius=radius_bone, segments=segments, use_cone=use_cone) | |
except ValueError as e: | |
print(f"Skipping connection {idx+1}, reason: {e}") | |
continue | |
all_vertices.extend(bone_vertices) | |
all_colors.extend([(0, 0, 1)] * len(bone_vertices)) # blue | |
# adjust face index | |
adjusted_bone_faces = [(v1 + vertex_offset, v2 + vertex_offset, v3 + vertex_offset) for (v1, v2, v3) in bone_faces] | |
all_faces.extend(adjusted_bone_faces) | |
vertex_offset += len(bone_vertices) | |
# save to obj | |
obj_lines = [] | |
for v, c in zip(all_vertices, all_colors): | |
obj_lines.append(f"v {v[0]} {v[1]} {v[2]} {c[0]} {c[1]} {c[2]}") | |
obj_lines.append("") | |
for face in all_faces: | |
obj_lines.append(f"f {face[0]} {face[1]} {face[2]}") | |
with open(save_path, 'w') as obj_file: | |
obj_file.write("\n".join(obj_lines)) | |
def create_sphere(center, radius=0.01, segments=16, stacks=16): | |
vertices = [] | |
faces = [] | |
for i in range(stacks + 1): | |
lat = np.pi / 2 - i * np.pi / stacks | |
xy = radius * np.cos(lat) | |
z = radius * np.sin(lat) | |
for j in range(segments): | |
lon = j * 2 * np.pi / segments | |
x = xy * np.cos(lon) + center[0] | |
y = xy * np.sin(lon) + center[1] | |
vertices.append((x, y, z + center[2])) | |
for i in range(stacks): | |
for j in range(segments): | |
first = i * segments + j | |
second = first + segments | |
third = first + 1 if (j + 1) < segments else i * segments | |
fourth = second + 1 if (j + 1) < segments else (i + 1) * segments | |
faces.append((first + 1, second + 1, fourth + 1)) | |
faces.append((first + 1, fourth + 1, third + 1)) | |
return vertices, faces | |
def create_bone(start, end, radius=0.005, segments=16, use_cone=False): | |
dir_vector = np.array(end) - np.array(start) | |
height = np.linalg.norm(dir_vector) | |
if height == 0: | |
raise ValueError("Start and end points cannot be the same for a cone.") | |
dir_vector = dir_vector / height | |
z = np.array([0, 0, 1]) | |
if np.allclose(dir_vector, z): | |
R = np.identity(3) | |
elif np.allclose(dir_vector, -z): | |
R = np.array([[-1,0,0],[0,-1,0],[0,0,1]]) | |
else: | |
v = np.cross(z, dir_vector) | |
s = np.linalg.norm(v) | |
c = np.dot(z, dir_vector) | |
kmat = np.array([[0, -v[2], v[1]], | |
[v[2], 0, -v[0]], | |
[-v[1], v[0], 0]]) | |
R = np.identity(3) + kmat + np.matmul(kmat, kmat) * ((1 - c) / (s**2)) | |
theta = np.linspace(0, 2 * np.pi, segments, endpoint=False) | |
base_circle = np.array([np.cos(theta), np.sin(theta), np.zeros(segments)]) * radius | |
vertices = [] | |
for point in base_circle.T: | |
rotated = np.dot(R, point) + np.array(start) | |
vertices.append(tuple(rotated)) | |
faces = [] | |
if use_cone: | |
vertices.append(tuple(end)) | |
apex_idx = segments + 1 | |
for i in range(segments): | |
next_i = (i + 1) % segments | |
faces.append((i + 1, next_i + 1, apex_idx)) | |
else: | |
top_circle = np.array([np.cos(theta), np.sin(theta), np.ones(segments)]) * radius | |
for point in top_circle.T: | |
point_scaled = np.array([point[0], point[1], height]) | |
rotated = np.dot(R, point_scaled) + np.array(start) | |
vertices.append(tuple(rotated)) | |
for i in range(segments): | |
next_i = (i + 1) % segments | |
faces.append((i + 1, next_i + 1, next_i + segments + 1)) | |
faces.append((i + 1, next_i + segments + 1, i + segments + 1)) | |
return vertices, faces | |
def render_mesh_with_skeleton(joints, bones, vertices, faces, output_dir, filename, prefix='pred', root_idx=None): | |
""" | |
Render the mesh with skeleton using PyRender. | |
""" | |
loader = DataLoader() | |
raw_size = (960, 960) | |
renderer = PyRenderWrapper(raw_size) | |
save_dir = os.path.join(output_dir, 'render_results') | |
os.makedirs(save_dir, exist_ok=True) | |
loader.joints = joints | |
loader.bones = bones | |
loader.root_idx = root_idx | |
mesh = trimesh.Trimesh(vertices=vertices, faces=faces) | |
mesh.visual.vertex_colors[:, 3] = 100 # set transparency | |
loader.mesh = mesh | |
v = mesh.vertices | |
xmin, ymin, zmin = v.min(axis=0) | |
xmax, ymax, zmax = v.max(axis=0) | |
loader.bbox_center = np.array([(xmax + xmin)/2, (ymax + ymin)/2, (zmax + zmin)/2]) | |
loader.bbox_size = np.array([xmax - xmin, ymax - ymin, zmax - zmin]) | |
loader.bbox_scale = max(xmax - xmin, ymax - ymin, zmax - zmin) | |
loader.normalize_coordinates() | |
input_dict = loader.query_mesh_rig() | |
angles = [0, np.pi/2, np.pi, 3*np.pi/2] | |
distance = np.max(loader.bbox_size) * 2 | |
subfolder_path = os.path.join(save_dir, filename + '_' + prefix) | |
os.makedirs(subfolder_path, exist_ok=True) | |
for i, angle in enumerate(angles): | |
renderer.set_camera_view(angle, loader.bbox_center, distance) | |
renderer.align_light_to_camera() | |
color = renderer.render(input_dict)[0] | |
output_filename = f"{filename}_{prefix}_view{i+1}.png" | |
output_filepath = os.path.join(subfolder_path, output_filename) | |
cv2.imwrite(output_filepath, color) | |
def save_args(args, output_dir, filename="config.json"): | |
args_dict = vars(args) | |
os.makedirs(output_dir, exist_ok=True) | |
config_path = os.path.join(output_dir, filename) | |
with open(config_path, 'w') as f: | |
json.dump(args_dict, f, indent=4) |