Magic-plus-1 / utils /skeleton_data_loader.py
HF User
πŸš€ Fresh deploy of Magic Articulate Enhanced MVP
e7b9fb6
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from torch import is_tensor
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
import numpy as np
class SkeletonData(Dataset):
"""
A PyTorch Dataset to load and process skeleton data.
"""
def __init__(self, data, args, is_training):
self.data = data
self.input_pc_num = args.input_pc_num
self.is_training = is_training
self.hier_order = args.hier_order
print(f"[Dataset] Created from {len(self.data)} entries")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = self.data[idx]
joints = data['joints']
bones = data['bones']
vertices = data['vertices']
pc_normal = data['pc_w_norm']
indices = np.random.choice(pc_normal.shape[0], self.input_pc_num, replace=False)
pc_normal = pc_normal[indices, :]
pc_coor = pc_normal[:, :3]
normal = pc_normal[:, 3:]
if np.linalg.norm(normal, axis=1, keepdims=True).min() < 0.99:
print("normal reroll")
return self.__getitem__(np.random.randint(0, len(self.data)))
data_dict = {}
# normalize normal
normal = normal / np.linalg.norm(normal, axis=1, keepdims=True)
# scale to -0.5 to 0.5
bounds = np.array([vertices.min(axis=0), vertices.max(axis=0)])
vertices = vertices - (bounds[0] + bounds[1])[None, :] / 2
vertices = vertices / ((bounds[1] - bounds[0]).max() + 1e-5)
joints = joints - (bounds[0] + bounds[1])[None, :] / 2
joints = joints / ((bounds[1] - bounds[0]).max() + 1e-5)
joints = joints.clip(-0.5, 0.5)
data_dict['joints'] = torch.from_numpy(np.asarray(joints).astype(np.float16))
data_dict['bones'] = torch.from_numpy(np.asarray(bones).astype(np.int64))
pc_coor = pc_coor / np.abs(pc_coor).max() * 0.9995
data_dict['pc_normal'] = torch.from_numpy(np.concatenate([pc_coor, normal], axis=-1).astype(np.float16))
data_dict['vertices'] = torch.from_numpy(data['vertices'].astype(np.float16))
data_dict['faces'] = torch.from_numpy(data['faces'].astype(np.int64))
data_dict['uuid'] = data['uuid']
data_dict['root_index'] = str(data['root_index'])
return data_dict
@classmethod
def load(cls, args, is_training=True):
loaded_data = np.load(args.dataset_path, allow_pickle=True)
data = []
for item in loaded_data["arr_0"]:
data.append(item)
print(f"[Dataset] Loaded {len(data)} entries")
return cls(data, args, is_training)