Noumida's picture
Update app.py
b16608d verified
from __future__ import annotations
import torch
import torchaudio
import gradio as gr
import spaces
from transformers import AutoModel
DESCRIPTION = "IndicConformer-600M Multilingual ASR (CTC + RNNT)"
LANGUAGE_NAME_TO_CODE = {
"Assamese": "as", "Bengali": "bn", "Bodo": "br", "Dogri": "doi",
"Gujarati": "gu", "Hindi": "hi", "Kannada": "kn", "Kashmiri": "ks",
"Konkani": "kok", "Maithili": "mai", "Malayalam": "ml", "Manipuri": "mni",
"Marathi": "mr", "Nepali": "ne", "Odia": "or", "Punjabi": "pa",
"Sanskrit": "sa", "Santali": "sat", "Sindhi": "sd", "Tamil": "ta",
"Telugu": "te", "Urdu": "ur"
}
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load Indic Conformer model (assumes custom forward handles decoding strategy)
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True).to(device)
model.eval()
@spaces.GPU
def transcribe_ctc_and_rnnt(audio_path, language_name):
lang_code = LANGUAGE_NAME_TO_CODE[language_name]
# Load and preprocess audio
waveform, sr = torchaudio.load(audio_path)
waveform = waveform.mean(dim=0, keepdim=True) if waveform.shape[0] > 1 else waveform
waveform = torchaudio.functional.resample(waveform, sr, 16000).to(device)
try:
# Assume model's forward method takes waveform, language code, and decoding type
with torch.no_grad():
transcription_ctc = model(waveform, lang_code, "ctc")
transcription_rnnt = model(waveform, lang_code, "rnnt")
except Exception as e:
return f"Error: {str(e)}", ""
return transcription_ctc.strip(), transcription_rnnt.strip()
# Gradio UI
with gr.Blocks() as demo:
gr.Markdown(f"## {DESCRIPTION}")
with gr.Row():
with gr.Column():
audio = gr.Audio(label="Upload or Record Audio", type="filepath")
lang = gr.Dropdown(
label="Select Language",
choices=list(LANGUAGE_NAME_TO_CODE.keys()),
value="Hindi"
)
transcribe_btn = gr.Button("Transcribe (CTC + RNNT)")
with gr.Column():
gr.Markdown("### CTC Transcription")
ctc_output = gr.Textbox(lines=3)
gr.Markdown("### RNNT Transcription")
rnnt_output = gr.Textbox(lines=3)
transcribe_btn.click(fn=transcribe_ctc_and_rnnt, inputs=[audio, lang], outputs=[ctc_output, rnnt_output], api_name="transcribe")
if __name__ == "__main__":
demo.queue().launch()