Spaces:
Running
Running
from __future__ import annotations | |
import torch | |
import torchaudio | |
import gradio as gr | |
import spaces | |
from transformers import AutoModel | |
DESCRIPTION = "IndicConformer-600M Multilingual ASR (CTC + RNNT)" | |
LANGUAGE_NAME_TO_CODE = { | |
"Assamese": "as", "Bengali": "bn", "Bodo": "br", "Dogri": "doi", | |
"Gujarati": "gu", "Hindi": "hi", "Kannada": "kn", "Kashmiri": "ks", | |
"Konkani": "kok", "Maithili": "mai", "Malayalam": "ml", "Manipuri": "mni", | |
"Marathi": "mr", "Nepali": "ne", "Odia": "or", "Punjabi": "pa", | |
"Sanskrit": "sa", "Santali": "sat", "Sindhi": "sd", "Tamil": "ta", | |
"Telugu": "te", "Urdu": "ur" | |
} | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Load Indic Conformer model (assumes custom forward handles decoding strategy) | |
model = AutoModel.from_pretrained("ai4bharat/indic-conformer-600m-multilingual", trust_remote_code=True).to(device) | |
model.eval() | |
def transcribe_ctc_and_rnnt(audio_path, language_name): | |
lang_code = LANGUAGE_NAME_TO_CODE[language_name] | |
# Load and preprocess audio | |
waveform, sr = torchaudio.load(audio_path) | |
waveform = waveform.mean(dim=0, keepdim=True) if waveform.shape[0] > 1 else waveform | |
waveform = torchaudio.functional.resample(waveform, sr, 16000).to(device) | |
try: | |
# Assume model's forward method takes waveform, language code, and decoding type | |
with torch.no_grad(): | |
transcription_ctc = model(waveform, lang_code, "ctc") | |
transcription_rnnt = model(waveform, lang_code, "rnnt") | |
except Exception as e: | |
return f"Error: {str(e)}", "" | |
return transcription_ctc.strip(), transcription_rnnt.strip() | |
# Gradio UI | |
with gr.Blocks() as demo: | |
gr.Markdown(f"## {DESCRIPTION}") | |
with gr.Row(): | |
with gr.Column(): | |
audio = gr.Audio(label="Upload or Record Audio", type="filepath") | |
lang = gr.Dropdown( | |
label="Select Language", | |
choices=list(LANGUAGE_NAME_TO_CODE.keys()), | |
value="Hindi" | |
) | |
transcribe_btn = gr.Button("Transcribe (CTC + RNNT)") | |
with gr.Column(): | |
gr.Markdown("### CTC Transcription") | |
ctc_output = gr.Textbox(lines=3) | |
gr.Markdown("### RNNT Transcription") | |
rnnt_output = gr.Textbox(lines=3) | |
transcribe_btn.click(fn=transcribe_ctc_and_rnnt, inputs=[audio, lang], outputs=[ctc_output, rnnt_output], api_name="transcribe") | |
if __name__ == "__main__": | |
demo.queue().launch() | |