File size: 14,914 Bytes
34b8f45 2172a53 34b8f45 2172a53 ad59333 34b8f45 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 4ff92c4 9d5f7bb 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 4ff92c4 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 9d5f7bb 2172a53 0ca5147 2172a53 0ca5147 9d5f7bb 2172a53 ad59333 8c74959 34b8f45 7e70af7 2172a53 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 9d5f7bb 2172a53 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 4ff92c4 34b8f45 ad59333 9d5f7bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# app.py
"""
Shoplifting detection Gradio app β robust startup:
- finds local model file (best.pt) anywhere in repo
- avoids writing to /data if not writable (chooses a writable fallback)
- sets YOLO_CONFIG_DIR to a writable dir to silence Ultralytics permission warnings
"""
import os
import time
import logging
import gradio as gr
import pandas as pd
import tempfile
# ensure deterministic logs
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# set YOLO_CONFIG_DIR to a writable folder inside the workspace to avoid Ultralytics permission warnings
YOLO_CONFIG_DIR = os.path.join(os.getcwd(), ".ultralytics")
os.environ.setdefault("YOLO_CONFIG_DIR", YOLO_CONFIG_DIR)
try:
os.makedirs(YOLO_CONFIG_DIR, exist_ok=True)
logger.info(f"YOLO_CONFIG_DIR set to: {YOLO_CONFIG_DIR}")
except Exception as e:
logger.warning(f"Failed creating YOLO_CONFIG_DIR {YOLO_CONFIG_DIR}: {e}")
# ---- model config ----
MODEL_FILENAME = "best.pt"
# common expected locations (but we'll search recursively)
COMMON_MODEL_PATHS = [
os.path.join(os.getcwd(), MODEL_FILENAME),
os.path.join(os.getcwd(), "models", MODEL_FILENAME),
]
# ---- utility: choose writable path (for cache and outputs) ----
def choose_writable_path(preferred_paths, fallback_name):
"""
Return first writable path from preferred_paths (creates if needed).
Falls back to tempfile or current working dir subfolder.
"""
for p in preferred_paths:
if not p:
continue
try:
os.makedirs(p, exist_ok=True)
# quick write test
test_path = os.path.join(p, f".write_test_{int(time.time())}")
with open(test_path, "w") as f:
f.write("ok")
os.remove(test_path)
logger.info(f"Using writable path: {p}")
return p
except Exception as e:
logger.warning(f"Cannot use path '{p}': {e}")
tmp_base = os.path.join(tempfile.gettempdir(), fallback_name)
try:
os.makedirs(tmp_base, exist_ok=True)
logger.info(f"Falling back to temporary path: {tmp_base}")
return tmp_base
except Exception as e:
cwd_fallback = os.path.join(os.getcwd(), fallback_name)
try:
os.makedirs(cwd_fallback, exist_ok=True)
logger.info(f"Falling back to CWD path: {cwd_fallback}")
return cwd_fallback
except Exception as e2:
raise RuntimeError(f"Failed to create fallback dirs: {e} / {e2}")
# Resolve HF cache & outputs using writable locations (do not assume /data exists or is writable)
PREFERRED_HF_HOME = os.getenv("HF_HOME") # if user set in env vars
if not PREFERRED_HF_HOME:
PREFERRED_HF_HOME = os.path.join(os.getcwd(), ".huggingface") # default inside repo
HF_HOME_DIR = choose_writable_path([PREFERRED_HF_HOME, os.path.join(os.getcwd(), ".huggingface")], "hf_cache")
CACHE_DIR = os.path.join(HF_HOME_DIR, "hub")
PREFERRED_BASE_OUT = os.getenv("BASE_OUT") or os.path.join(os.getcwd(), "shoplift_outputs")
BASE_OUT = choose_writable_path([PREFERRED_BASE_OUT, os.path.join(os.getcwd(), "shoplift_outputs")], "shoplift_outputs")
os.makedirs(BASE_OUT, exist_ok=True)
logger.info(f"CACHE_DIR resolved to: {CACHE_DIR}")
logger.info(f"BASE_OUT resolved to: {BASE_OUT}")
# ---- prepare model path: search locally first (recommended) ----
def find_local_model():
# 1) check common places
for p in COMMON_MODEL_PATHS:
try:
if os.path.exists(p):
size = os.path.getsize(p)
if size > 100 * 1024: # treat anything >100KB as the real model
return p
else:
logger.warning(f"Found {p} but size is small ({size} bytes) β might be a pointer file.")
except Exception:
continue
# 2) recursive search within workspace
for root, dirs, files in os.walk(os.getcwd()):
if MODEL_FILENAME in files:
candidate = os.path.join(root, MODEL_FILENAME)
try:
size = os.path.getsize(candidate)
except Exception:
size = 0
if size > 100 * 1024:
return candidate
else:
# small file -> likely Git LFS pointer
raise RuntimeError(
f"Found {candidate} but its size is {size} bytes β looks like a Git LFS pointer. "
"Make sure you uploaded the real model binary (use git lfs) or place the full .pt in the repo."
)
return None
# Try to find the model locally
local_model = find_local_model()
if local_model:
MODEL_PATH = local_model
logger.info(f"Using local model file at: {MODEL_PATH}")
else:
# No local model found β give clear error and instructions
raise RuntimeError(
"No local model 'best.pt' found in the repository. Please add the model binary to the repo (recommended),\n"
"or set HUGGINGFACE_HUB_TOKEN in Space settings to allow downloading from the Hub. "
"Recommended step: put the full model binary at the project root or at models/best.pt and re-run."
)
# ---- imports that rely on MODEL_PATH being set ----
from video import process_video_stream
from image import process_image
# ---- SMTP / Email settings (use env vars; fallback to defaults where appropriate) ----
SMTP_SERVER = os.getenv("SMTP_SERVER", "smtp.gmail.com")
SMTP_PORT = int(os.getenv("SMTP_PORT", os.getenv("SMTP_PORT", "587")))
EMAIL_USER = os.getenv("EMAIL_USER", "nourmohamed20230@gmail.com")
EMAIL_PASS = os.getenv("EMAIL_PASS", "rklowjzoywtbttxz") # recommended: set this in Space Secrets / env vars (app password)
if not EMAIL_PASS:
logger.warning(
"EMAIL_PASS not set. Email sending will be disabled until you set EMAIL_PASS as an env var "
"(use an app password for Gmail). Set EMAIL_USER and EMAIL_PASS in Space Settings -> Variables/Secrets."
)
def make_smtp_cfg(email_to):
if email_to and email_to.strip():
return {
"enabled": True,
"smtp_server": SMTP_SERVER,
"smtp_port": SMTP_PORT,
"email_user": EMAIL_USER,
"email_pass": EMAIL_PASS,
"email_to": email_to.strip()
}
else:
return {"enabled": False}
def make_openrouter_cfg():
OPENROUTER_API_KEY = os.getenv("OPENROUTER_API_KEY", "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")
OPENROUTER_BASEURL = os.getenv("OPENROUTER_BASEURL", "https://openrouter.ai/api/v1")
OPENROUTER_MODEL = os.getenv("OPENROUTER_MODEL", "google/gemma-3-12b-it:free")
if OPENROUTER_API_KEY and OPENROUTER_API_KEY.strip():
return {
"api_key": OPENROUTER_API_KEY.strip(),
"base_url": OPENROUTER_BASEURL,
"model_name": OPENROUTER_MODEL
}
else:
return None
def run_video_pipeline(uploaded_video_file, email_to, conf_thresh, confirm_conf_thresh):
"""Wrapper generator for video processing to normalize outputs for Gradio."""
if uploaded_video_file is None:
yield "Please upload a video.", None, None, [], pd.DataFrame(), None
return
ts = int(time.time())
run_dir = os.path.join(BASE_OUT, f"run_{ts}")
os.makedirs(run_dir, exist_ok=True)
# save uploaded video (uploaded_video_file is a gr.File -> has .name path)
video_local = os.path.join(run_dir, "input_video.mp4")
try:
with open(video_local, "wb") as out_f, open(uploaded_video_file.name, "rb") as in_f:
out_f.write(in_f.read())
except Exception as e:
yield f"Error saving uploaded video: {e}", None, None, [], pd.DataFrame(), None
return
smtp_cfg = make_smtp_cfg(email_to)
openrouter_cfg = make_openrouter_cfg()
gen = process_video_stream(
video_path=video_local,
model_path=MODEL_PATH,
out_root=run_dir,
openrouter_cfg=openrouter_cfg,
smtp_cfg=smtp_cfg,
conf_thresh=float(conf_thresh),
confirm_conf_thresh=float(confirm_conf_thresh),
send_interval=4.0,
confirmed_block_seconds=1000.0,
progress_interval_frames=30
)
last_csv_df = pd.DataFrame()
last_gallery = []
last_annotated_video = None
last_live = None
for update in gen:
status = update.get("status", "")
live_frame = update.get("live_frame", "") # path to last suspicious frame
suspicious_list = update.get("suspicious_list", []) or []
csv_path = update.get("csv_path", "")
annotated_video = update.get("annotated_video", None)
# load CSV into dataframe if exists
if csv_path and os.path.exists(csv_path):
try:
df = pd.read_csv(csv_path)
except Exception:
df = last_csv_df
else:
df = last_csv_df
gallery_list = suspicious_list
live_img = live_frame if live_frame and os.path.exists(live_frame) else last_live
last_csv_df = df
last_gallery = gallery_list
if annotated_video:
last_annotated_video = annotated_video
last_live = live_img
# For video mode: annotated_vid filled, annotated_img None
yield status, (last_annotated_video if last_annotated_video else None), None, gallery_list, df, (live_img if live_img else None)
return
def run_image_pipeline(uploaded_image_file, email_to, conf_thresh, confirm_conf_thresh):
"""Wrapper generator for image processing to normalize outputs for Gradio."""
if uploaded_image_file is None:
yield "Please upload an image.", None, None, [], pd.DataFrame(), None
return
ts = int(time.time())
run_dir = os.path.join(BASE_OUT, f"run_{ts}")
os.makedirs(run_dir, exist_ok=True)
# save uploaded image (uploaded_image_file is gr.File -> has .name path)
image_local = os.path.join(run_dir, os.path.basename(uploaded_image_file.name))
try:
with open(image_local, "wb") as out_f, open(uploaded_image_file.name, "rb") as in_f:
out_f.write(in_f.read())
except Exception as e:
yield f"Error saving uploaded image: {e}", None, None, [], pd.DataFrame(), None
return
smtp_cfg = make_smtp_cfg(email_to)
openrouter_cfg = make_openrouter_cfg()
gen = process_image(
image_path=image_local,
model_path=MODEL_PATH,
out_root=run_dir,
openrouter_cfg=openrouter_cfg,
smtp_cfg=smtp_cfg,
conf_thresh=float(conf_thresh),
confirm_conf_thresh=float(confirm_conf_thresh)
)
last_csv_df = pd.DataFrame()
last_gallery = []
last_annotated_image = None
last_live = None
for update in gen:
status = update.get("status", "")
live_frame = update.get("live_frame", "") # path to last suspicious frame
suspicious_list = update.get("suspicious_list", []) or []
csv_path = update.get("csv_path", "")
annotated_image = update.get("annotated_image", None)
# load CSV into dataframe if exists
if csv_path and os.path.exists(csv_path):
try:
df = pd.read_csv(csv_path)
except Exception:
df = last_csv_df
else:
df = last_csv_df
gallery_list = suspicious_list
live_img = live_frame if live_frame and os.path.exists(live_frame) else last_live
last_csv_df = df
last_gallery = gallery_list
if annotated_image:
last_annotated_image = annotated_image
last_live = live_img
# For image mode: annotated_vid None, annotated_img filled
yield status, None, (last_annotated_image if last_annotated_image else None), gallery_list, df, (live_img if live_img else None)
return
def run_handler(mode, video_file, image_file, email_to, conf_thresh, confirm_conf_thresh):
"""Main dispatching function called by Gradio. It yields tuples matching outputs:
(status_txt, annotated_vid, annotated_img, gallery, csv_table (df), live_frame)
"""
if mode == "Video":
# delegate to video pipeline generator
for out in run_video_pipeline(video_file, email_to, conf_thresh, confirm_conf_thresh):
yield out
else:
# Image mode
for out in run_image_pipeline(image_file, email_to, conf_thresh, confirm_conf_thresh):
yield out
# Build Gradio UI
with gr.Blocks() as demo:
gr.Markdown("# Shoplifting Detection β Video or Image")
with gr.Row():
with gr.Column(scale=2):
mode = gr.Radio(["Video", "Image"], label="Mode", value="Video")
video_file = gr.File(label="Upload video (mp4...)", file_types=["video"], visible=True)
image_file = gr.File(label="Upload image (jpg/png...)", file_types=["image"], visible=False)
email_to = gr.Textbox(label="Recipient email (to) β leave empty to disable email")
conf_thresh = gr.Slider(label="Confidence threshold", minimum=0.01, maximum=1.0, value=0.5, step=0.01)
confirm_conf = gr.Slider(label="Confirmation threshold", minimum=0.01, maximum=1.0, value=0.7, step=0.01)
start_btn = gr.Button("Start")
gr.Markdown(f"**Using MODEL_PATH (static):** `{MODEL_PATH}`")
gr.Markdown("**Note:** SMTP / OpenRouter API key are read from env vars if set.")
with gr.Column(scale=2):
status_txt = gr.Textbox(label="Status", lines=3)
annotated_vid = gr.Video(label="Annotated video (final)", visible=True)
annotated_img = gr.Image(label="Annotated image (final)", visible=False)
gallery = gr.Gallery(label="Suspicious frames (click to preview)", columns=4, height="auto")
csv_table = gr.Dataframe(label="CSV Log")
live_frame = gr.Image(label="Live detected frame (real-time)")
# Toggle visibility of inputs/outputs when mode changes
def toggle_mode(m):
if m == "Video":
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True)
# Connect mode change: updates (video_file, image_file, annotated_vid, annotated_img)
mode.change(toggle_mode, inputs=[mode], outputs=[video_file, image_file, annotated_vid, annotated_img])
# Start button triggers the dispatcher. Outputs: status_txt, annotated_vid, annotated_img, gallery, csv_table, live_frame
start_btn.click(
fn=run_handler,
inputs=[mode, video_file, image_file, email_to, conf_thresh, confirm_conf],
outputs=[status_txt, annotated_vid, annotated_img, gallery, csv_table, live_frame]
)
if __name__ == "__main__":
demo.launch(share=True)
|