File size: 18,975 Bytes
89e89c7 09fe150 89e89c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
# image.py
"""
Processing logic for shoplifting detection (single-image version).
Exposes process_image(...) generator which yields updates while processing.
Each yielded update is a dict with keys:
- status: human string
- live_frame: path to latest suspicious frame image (or "")
- suspicious_list: list of saved suspicious image paths so far
- csv_path: path to CSV log (updated)
- annotated_image: path to annotated image (only on final yield)
"""
import os
import time
import csv
import json
import base64
import cv2
from ultralytics import YOLO
import logging
# basic logger for these modules
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Optional OpenRouter client - only used if key provided.
try:
from openai import OpenAI
except Exception:
OpenAI = None
def _ensure_dir(p):
os.makedirs(p, exist_ok=True)
def send_email_with_attachment(smtp_cfg, subject, html_body, attachment_path=None, attachment_bytes=None, attachment_filename=None):
"""
smtp_cfg: dict with smtp_server, smtp_port, email_user, email_pass, email_to, enabled
Either attachment_path (str) or attachment_bytes (bytes) can be provided.
If attachment_bytes provided and attachment_filename None -> uses 'attachment.jpg' as filename.
Returns (success: bool, timestamp_str or error_str)
"""
if not smtp_cfg or not smtp_cfg.get("enabled"):
return False, "smtp_disabled"
try:
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from email.mime.base import MIMEBase
from email import encoders
from email.utils import formatdate
import mimetypes
smtp_server = smtp_cfg.get("smtp_server")
smtp_port = int(smtp_cfg.get("smtp_port", 587))
email_user = smtp_cfg.get("email_user")
email_pass = smtp_cfg.get("email_pass")
email_to = smtp_cfg.get("email_to")
if not (smtp_server and smtp_port and email_user and email_pass and email_to):
logger.warning("Incomplete SMTP config — cannot send email.")
return False, "incomplete_smtp_cfg"
msg = MIMEMultipart()
msg["From"] = email_user
msg["To"] = email_to
msg["Date"] = formatdate(localtime=True)
msg["Subject"] = subject
msg.attach(MIMEText(html_body, "html"))
# prepare attachment
if attachment_bytes is not None:
filename = attachment_filename if attachment_filename else "attachment.jpg"
ctype, encoding = mimetypes.guess_type(filename)
maintype, subtype = (ctype.split("/", 1) if ctype else ("application", "octet-stream"))
part = MIMEBase(maintype, subtype)
part.set_payload(attachment_bytes)
encoders.encode_base64(part)
part.add_header("Content-Disposition", f'attachment; filename="{filename}"')
msg.attach(part)
elif attachment_path is not None:
if not os.path.exists(attachment_path):
logger.warning(f"Attachment path does not exist: {attachment_path}")
else:
with open(attachment_path, "rb") as f:
file_bytes = f.read()
filename = attachment_filename if attachment_filename else os.path.basename(attachment_path)
ctype, encoding = mimetypes.guess_type(filename)
maintype, subtype = (ctype.split("/", 1) if ctype else ("application", "octet-stream"))
part = MIMEBase(maintype, subtype)
part.set_payload(file_bytes)
encoders.encode_base64(part)
part.add_header("Content-Disposition", f'attachment; filename="{filename}"')
msg.attach(part)
# connect and send
if smtp_port == 465:
server = smtplib.SMTP_SSL(smtp_server, smtp_port, timeout=20)
else:
server = smtplib.SMTP(smtp_server, smtp_port, timeout=20)
server.ehlo()
try:
server.starttls()
except Exception as e:
logger.warning(f"starttls failed or not supported: {e}")
server.login(email_user, email_pass)
server.sendmail(email_user, [email_to], msg.as_string())
server.quit()
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
return True, ts
except Exception as e:
logger.exception("[EMAIL ERROR]")
return False, str(e)
def analyze_with_gemini_if_enabled(openrouter_cfg, image_path, frame_idx, bbox, conf_val, out_dir, log_csv, source_path, smtp_cfg):
"""
Same function as in video.py (adapted call param name source_path instead of video_path).
Writes a single CSV row inside this function.
CSV columns (order): id, timestamp, video_path, frame_idx, label, model_conf,
bbox, x1, y1, x2, y2, image_path, crop_path,
email_sent, email_timestamp, notes
"""
api_summary = ""
try:
# if API disabled --> write a skipped row with minimal fields
if not openrouter_cfg or not openrouter_cfg.get("api_key") or OpenAI is None:
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
uid = f"frame_{frame_idx:06d}"
bbox_str = ""
x1 = y1 = x2 = y2 = ""
row = [
uid, ts, source_path, frame_idx, "shoplifting",
f"{conf_val:.3f}" if conf_val is not None else "",
bbox_str, x1, y1, x2, y2,
image_path, "", # crop_path empty
"False", "", # email_sent, email_timestamp
"api_skipped" # notes
]
with open(log_csv, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(row)
return {"skipped": True}
# --- call OpenAI/OpenRouter ---
client = OpenAI(base_url=openrouter_cfg.get("base_url", "https://openrouter.ai/api/v1"),
api_key=openrouter_cfg["api_key"])
with open(image_path, "rb") as f:
b64 = base64.b64encode(f.read()).decode("utf-8")
prompt_text = """
You are a visual analyst. Examine the image and answer with a concise JSON object.
Return EXACT JSON keys: theft, reason, suspect_description.
If theft detected use "Yes" else "No".
"""
messages = [
{"role": "user",
"content": [
{"type": "text", "text": prompt_text},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{b64}"}}
]}
]
completion = client.chat.completions.create(
model=openrouter_cfg.get("model_name"),
messages=messages
)
observation = completion.choices[0].message.content.strip()
api_summary = observation.replace("\n", " ")
api_json = {}
try:
start = observation.find("{")
end = observation.rfind("}") + 1
if start != -1 and end != -1:
api_json = json.loads(observation[start:end])
else:
api_json = {"raw": observation}
except Exception:
api_json = {"raw": observation}
api_theft = api_json.get("theft", "") if isinstance(api_json, dict) else ""
api_reason = api_json.get("reason", "") if isinstance(api_json, dict) else ""
api_suspect = api_json.get("suspect_description", "") if isinstance(api_json, dict) else ""
crop_path = ""
email_sent = False
email_ts = ""
# if theft yes -> crop and maybe send email
if api_theft and str(api_theft).lower() == "yes":
if bbox:
x1i, y1i, x2i, y2i = bbox
# read the frame bytes (if image_path is bytes path or actual path)
frame = None
try:
frame = cv2.imread(image_path)
except Exception:
frame = None
if frame is not None and x2i > x1i and y2i > y1i:
crop = frame[y1i:y2i, x1i:x2i]
ok, crop_buf = cv2.imencode('.jpg', crop)
if ok:
crop_bytes = crop_buf.tobytes()
# optionally save a copy on disk (non-mandatory); keep original behavior but guarded
try:
crop_path = os.path.join(out_dir, f"crop_{frame_idx}.jpg")
with open(crop_path, "wb") as cf:
cf.write(crop_bytes)
except Exception:
# ignore write failure; we will still attempt to email the bytes
crop_path = ""
details_html = "<ul>"
if api_reason:
details_html += f"<li><b>Reason:</b> {api_reason}</li>"
if api_suspect:
details_html += f"<li><b>Suspect:</b> {api_suspect}</li>"
details_html += "</ul>"
html_body = f"""
<html><body>
<h3>⚠ Alert - Suspicious activity detected</h3>
{details_html}
<p>Frame index: {frame_idx} | Confidence: {conf_val:.3f}</p>
</body></html>
"""
if smtp_cfg and smtp_cfg.get("enabled"):
success, info = send_email_with_attachment(
smtp_cfg,
"Shoplifting Alert",
html_body,
attachment_bytes=crop_bytes,
attachment_filename=f"crop_{frame_idx}.jpg"
)
if success:
email_sent = True
email_ts = info # timestamp
# prepare bbox strings / coords for CSV
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
uid = f"frame_{frame_idx:06d}"
bbox_str = ""
x1 = y1 = x2 = y2 = ""
if bbox:
try:
x1_val, y1_val, x2_val, y2_val = bbox
x1 = int(x1_val); y1 = int(y1_val); x2 = int(x2_val); y2 = int(y2_val)
bbox_str = f"{x1},{y1},{x2},{y2}"
except Exception:
bbox_str = ""
x1 = y1 = x2 = y2 = ""
# notes: keep compact API summary or theft/reason short note
notes = ""
if api_summary:
notes = api_summary
else:
# fallback short note
if api_theft:
notes = f"theft:{api_theft} reason:{api_reason}"
else:
notes = ""
row = [
uid, ts, source_path, frame_idx, "shoplifting",
f"{conf_val:.3f}" if conf_val is not None else "",
bbox_str, x1, y1, x2, y2,
image_path, crop_path,
str(email_sent), email_ts,
notes
]
with open(log_csv, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(row)
return api_json
except Exception as e:
print("[API ERROR]", e)
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
uid = f"frame_{frame_idx:06d}"
bbox_str = ""
x1 = y1 = x2 = y2 = ""
try:
if bbox:
x1v, y1v, x2v, y2v = bbox
x1 = x1v; y1 = y1v; x2 = x2v; y2 = y2v
bbox_str = f"{x1},{y1},{x2},{y2}"
except:
pass
row = [
uid, ts, source_path, frame_idx, "shoplifting",
f"{conf_val:.3f}" if conf_val is not None else "",
bbox_str, x1, y1, x2, y2,
image_path, "", # no crop
"False", "", # email_sent, email_timestamp
f"api_error: {e}"
]
try:
with open(log_csv, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(row)
except Exception as e2:
print("[CSV WRITE ERROR]", e2)
return {"error": str(e)}
def process_image(
image_path,
model_path,
out_root,
openrouter_cfg=None,
smtp_cfg=None,
conf_thresh=0.5,
confirm_conf_thresh=0.7
):
"""
Generator that yields updates during processing of a single image.
Yields dicts with keys: status, live_frame, suspicious_list, csv_path, annotated_image (only final)
"""
_ensure_dir(out_root)
suspicious_dir = os.path.join(out_root, "suspicious_images")
_ensure_dir(suspicious_dir)
csv_path = os.path.join(suspicious_dir, "suspicious_log.csv")
CSV_HEADER = [
"id", "timestamp", "video_path", "frame_idx", "label", "model_conf",
"bbox", "x1", "y1", "x2", "y2", "image_path", "crop_path",
"email_sent", "email_timestamp", "notes"
]
# create CSV header
with open(csv_path, "w", newline="", encoding="utf-8") as f:
w = csv.writer(f)
w.writerow(CSV_HEADER)
# load model
yield {"status": "Loading model...", "live_frame": "", "suspicious_list": [], "csv_path": csv_path}
model = YOLO(model_path)
# pick device
device = "cpu"
try:
import torch
device = 0 if torch.cuda.is_available() else "cpu"
except Exception:
device = "cpu"
# read image
if not os.path.exists(image_path):
yield {"status": f"ERROR: Cannot open image {image_path}", "live_frame": "", "suspicious_list": [], "csv_path": csv_path}
return
frame_bgr = cv2.imread(image_path)
if frame_bgr is None:
yield {"status": f"ERROR: Failed to read image {image_path}", "live_frame": "", "suspicious_list": [], "csv_path": csv_path}
return
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).copy()
yield {"status": "Starting inference on image...", "live_frame": "", "suspicious_list": [], "csv_path": csv_path}
# run prediction (non-stream)
results = model.predict(source=image_path, device=device, conf=conf_thresh)
annotated = frame_bgr.copy()
suspicious_saved = []
last_live = ""
detection_idx = 0
found_any = False
# results is a list (one element per image)
for r in results:
boxes, confs, cls_idx = [], [], []
if hasattr(r, "boxes") and r.boxes is not None:
try:
boxes = r.boxes.xyxy.cpu().numpy().tolist()
confs = r.boxes.conf.cpu().numpy().tolist()
cls_idx = r.boxes.cls.cpu().numpy().astype(int).tolist()
except Exception:
try:
boxes = r.boxes.xyxy.tolist()
confs = r.boxes.conf.tolist()
cls_idx = [int(x) for x in getattr(r.boxes, "cls", [])] if getattr(r.boxes, "cls", None) is not None else []
except Exception:
boxes, confs, cls_idx = [], [], []
highest_conf = 0.0
chosen_bbox = None
for i, box in enumerate(boxes):
conf = confs[i] if i < len(confs) else 0.0
cid = cls_idx[i] if i < len(cls_idx) else None
label = str(cid) if cid is not None else "obj"
try:
if isinstance(model.names, dict):
label = model.names.get(cid, str(cid))
else:
label = model.names[cid]
except Exception:
pass
if conf < conf_thresh:
continue
x1, y1, x2, y2 = [int(round(float(v))) for v in box[:4]]
color = (0, 255, 0)
if label.strip().lower() == "shoplifting":
color = (0, 0, 255)
if conf >= confirm_conf_thresh and conf > highest_conf:
highest_conf = conf
chosen_bbox = (x1, y1, x2, y2)
# draw on annotated image
cv2.rectangle(annotated, (x1, y1), (x2, y2), color, 2)
label_text = f"{label} {conf:.2f}"
cv2.putText(annotated, label_text, (x1, max(15, y1 - 5)), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2, cv2.LINE_AA)
# if this detection qualifies as suspicious (confirmed)
if label.strip().lower() == "shoplifting" and conf >= confirm_conf_thresh:
found_any = True
saved_name = f"img_{detection_idx:03d}_{int(time.time())}.jpg"
saved_path = os.path.join(suspicious_dir, saved_name)
# save the full annotated frame as suspicious saved (keeps parity with video flow)
cv2.imwrite(saved_path, annotated)
suspicious_saved.append(saved_path)
last_live = saved_path
# call API & maybe send email (synchronously)
analyze_with_gemini_if_enabled(openrouter_cfg, saved_path, detection_idx, (x1, y1, x2, y2),
conf, suspicious_dir, csv_path, image_path, smtp_cfg)
# yield an update for this detection
yield {"status": f"Suspicious detection saved: {os.path.basename(saved_path)} (det {detection_idx})",
"live_frame": last_live,
"suspicious_list": suspicious_saved.copy(),
"csv_path": csv_path}
detection_idx += 1
# end boxes loop
# write final annotated image
annotated_image_path = os.path.join(out_root, f"annotated_{int(time.time())}.jpg")
cv2.imwrite(annotated_image_path, annotated)
# if no suspicious detections found, still write a CSV row to note scan (optional)
if not found_any:
# write a "no suspicious" row to CSV for traceability
ts = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
uid = "no_suspicious_000000"
row = [
uid, ts, image_path, 0, "none", "",
"", "", "", "", "",
image_path, "", # no crop
"False", "", # email_sent, email_timestamp
"no_suspicious_detections"
]
with open(csv_path, "a", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(row)
yield {"status": "No suspicious detections found.", "live_frame": last_live, "suspicious_list": suspicious_saved.copy(), "csv_path": csv_path}
# final yield with annotated image path
yield {"status": "Finished processing image.", "live_frame": last_live, "suspicious_list": suspicious_saved.copy(), "csv_path": csv_path, "annotated_image": annotated_image_path}
|