Spaces:
Build error
Build error
| import os | |
| import random | |
| import re | |
| from string import Template | |
| import gradio as gr | |
| import pandas as pd | |
| from datasets import Dataset | |
| from huggingface_hub import HfApi | |
| from pypdf import PdfReader | |
| to_be_removed = ["ͳ", "•", "→", "□", "▪", "►", "�", "", "", "", ""] | |
| to_be_replaced = { | |
| "½": "1/2", | |
| "–": "-", | |
| "‘": "'", | |
| "’": "'", | |
| "…": "...", | |
| "₋": "-", | |
| "−": "-", | |
| "⓫": "11.", | |
| "⓬": "12.", | |
| "⓭": "13.", | |
| "⓮": "14.", | |
| "◦": "°", | |
| "❶": "1.", | |
| "❷": "2.", | |
| "❸": "3.", | |
| "❹": "4.", | |
| "❺": "5.", | |
| "❻": "6.", | |
| "❼": "7.", | |
| "❽": "8.", | |
| "❾": "9.", | |
| "❿": "10.", | |
| "\n": " ", | |
| } | |
| def clean(text): | |
| # Remove all the unwanted characters | |
| for char in to_be_removed: | |
| text = text.replace(char, "") | |
| # Replace all the characters that need to be replaced | |
| for char, replacement in to_be_replaced.items(): | |
| text = text.replace(char, replacement) | |
| # For all \n, if the next line doesn't start with a capital letter, remove the \n | |
| # text = re.sub(r"\n([^A-ZÀ-ÖØ-Þ])", r" \1", text) | |
| # Make sure that every "." is followed by a space | |
| text = re.sub(r"\.([^ ])", r". \1", text) | |
| # Add a space between a lowercase followed by an uppercase "aA" -> "a A" (include accents) | |
| text = re.sub(r"([a-zà-öø-ÿ])([A-ZÀ-ÖØ-Þ])", r"\1 \2", text) | |
| # Make sure that there is no space before a comma, a period, or a hyphen | |
| text = text.replace(" ,", ",") | |
| text = text.replace(" .", ".") | |
| text = text.replace(" -", "-") | |
| text = text.replace("- ", "-") | |
| while " " in text: | |
| text = text.replace(" ", " ") | |
| return text | |
| def pdf2dataset(pathes, user_id, dataset_id, token, private, progress=gr.Progress()): | |
| if any([user_id, dataset_id, token]) and not all([user_id, dataset_id, token]): | |
| raise gr.Error("Please provide all three: User ID, Dataset ID, and API token.") | |
| if user_id == "": | |
| user_id = "pdf2dataset" | |
| private = False | |
| if dataset_id == "": | |
| dataset_id = f"{random.getrandbits(128):x}" | |
| if token == "": | |
| token = os.getenv("HF_TOKEN") | |
| progress(0, desc="Starting...") | |
| readers = [] | |
| for path in pathes: | |
| try: | |
| readers.append(PdfReader(path)) | |
| except Exception as e: | |
| raise gr.Error(f"Failed to read {path.split('/')[-1]}.") | |
| num_pages = sum(len(reader.pages) for reader in readers) | |
| filenames = [path.split("/")[-1] for path in pathes] | |
| # Convert the PDFs to text | |
| page_texts = [] | |
| page_filenames = [] | |
| progress(0, desc="Converting pages...") | |
| for reader, filename in zip(readers, filenames): | |
| for page in reader.pages: | |
| page_text = page.extract_text() | |
| page_text = clean(page_text) | |
| page_texts.append(page_text) | |
| page_filenames.append(filename) | |
| progress(len(page_texts) / num_pages, desc="Converting pages...") | |
| # Upload the dataset to Hugging Face | |
| progress(0, desc="Uploading to Hugging Face...") | |
| dataset = Dataset.from_dict({"text": page_texts, "source": page_filenames}) | |
| dataset.push_to_hub(f"{user_id}/{dataset_id}", token=token, private=private) | |
| progress(1, desc="Done!") | |
| instructions = instructions_template.substitute(user_id=user_id, dataset_id=dataset_id) | |
| preview = pd.DataFrame(dataset[:10]) | |
| print(f"Dataset {dataset_id} uploaded successfully.") | |
| delete_dataset_id = dataset_id if user_id == "pdf2dataset" else "" | |
| return instructions, preview, delete_dataset_id | |
| def delete_dataset(repo_id_or_dataset_id): | |
| # Get the user_id, dataset_id | |
| if "/" in repo_id_or_dataset_id: | |
| user_id, dataset_id = repo_id_or_dataset_id.split("/") | |
| repo_id = repo_id_or_dataset_id | |
| else: | |
| user_id = "pdf2dataset" | |
| dataset_id = repo_id_or_dataset_id | |
| repo_id = f"{user_id}/{dataset_id}" | |
| # Only allow the deletion of datasets in the pdf2dataset namespace | |
| if not user_id == "pdf2dataset": | |
| print(f"Deleting datasets in the {user_id} namespace is not allowed.") | |
| return f"❌ Deleting datasets in the {user_id} namespace is not allowed." | |
| # Delete the dataset | |
| api = HfApi() | |
| try: | |
| api.delete_repo(repo_id, repo_type="dataset") | |
| print(f"Dataset {repo_id} deleted successfully.") | |
| return "✅ Dataset deleted successfully." | |
| except Exception as e: | |
| print(f"Error deleting dataset{repo_id}: {e}") | |
| return f"❌ Error deleting dataset: {e}" | |
| caution_text = """⚠️ Caution: | |
| - This process will upload your data to a public Hugging Face repository. Do not upload sensitive information. | |
| - Anyone (including you) will be able to delete the dataset once it is uploaded. | |
| To avoid this, you can push the dataset to your personal Hugging Face account ⬇️ | |
| """ | |
| instructions_template = Template( | |
| """ | |
| 🔗: https://huggingface.co/datasets/$user_id/$dataset_id. | |
| ```python | |
| from datasets import load_dataset | |
| dataset = load_dataset("$user_id/$dataset_id") | |
| ``` | |
| """ | |
| ) | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# PDF to 🤗 Dataset") | |
| gr.Markdown("## 1️⃣ Upload PDFs") | |
| file = gr.File(file_types=["pdf"], file_count="multiple") | |
| gr.Markdown(caution_text) | |
| with gr.Accordion("🔒 Pushing to my personal Hugging Face namespace", open=False): | |
| gr.Markdown( | |
| """Recommended for API token | |
| - Go to https://huggingface.co/settings/tokens?new_token=true | |
| - Choose _Fine-grained_ | |
| - Check only _**Repos**/Write access to contents/settings of all repos under your personal namespace_ | |
| - Revoke the token after use""" | |
| ) | |
| user_id = gr.Textbox(label="User ID", placeholder="Enter your Hugging Face user ID") | |
| dataset_id = gr.Textbox(label="Dataset ID", placeholder="Enter the desired dataset ID") | |
| token = gr.Textbox(label="API token", placeholder="Enter a Hugging Face API token") | |
| private = gr.Checkbox(label="Make dataset private") | |
| gr.Markdown("## 2️⃣ Convert the PDFs and upload") | |
| convert_button = gr.Button("🔄 Convert and upload") | |
| preview = gr.Dataframe( | |
| label="Preview (first 10 rows)", headers=["text", "source"], datatype=["str", "str"], row_count=10, wrap=True, height=200 | |
| ) | |
| gr.Markdown("## 3️⃣ Use the dataset in your code") | |
| instructions = gr.Markdown(instructions_template.substitute(user_id="pdf2dataset", dataset_id="generated_dataset_id")) | |
| gr.Markdown("## 4️⃣ Delete the dataset (optional)") | |
| dataset_id_to_delete = gr.Textbox("", placeholder="Enter dataset name to delete", label="Dataset to delete") | |
| delete_button = gr.Button("🗑️ Delete dataset") | |
| # Define the actions | |
| convert_button.click( | |
| pdf2dataset, inputs=[file, user_id, dataset_id, token, private], outputs=[instructions, preview, dataset_id_to_delete] | |
| ) | |
| delete_button.click(delete_dataset, inputs=[dataset_id_to_delete], outputs=[delete_button]) | |
| dataset_id_to_delete.input(lambda: "🗑️ Delete dataset", outputs=[delete_button]) | |
| demo.launch() | |