Spaces:
Sleeping
Sleeping
File size: 8,118 Bytes
a7eb20d d411917 3ea2bf9 57cd8cf 3ea2bf9 a7eb20d 3ea2bf9 57cd8cf 3ea2bf9 e97e0b7 3ea2bf9 e97e0b7 345d10b 3ea2bf9 a7eb20d 3ea2bf9 a7eb20d 3ea2bf9 a7eb20d 3ea2bf9 a7eb20d 3ea2bf9 a7eb20d 74b0cea 9d56b27 74b0cea 9d56b27 3ea2bf9 74b0cea 9d56b27 3ea2bf9 9d56b27 74b0cea 9d56b27 74b0cea 9d56b27 74b0cea 3ea2bf9 9d56b27 74b0cea 9d56b27 3ea2bf9 9d56b27 3ea2bf9 9d56b27 3ea2bf9 9d56b27 3ea2bf9 9d56b27 3ea2bf9 9d56b27 3ea2bf9 57cd8cf 3ea2bf9 57cd8cf 3ea2bf9 57cd8cf 3ea2bf9 57cd8cf 3ea2bf9 57cd8cf 3ea2bf9 57cd8cf 3ea2bf9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import os
import shutil
from fastapi import FastAPI, Request, HTTPException, Depends
from fastapi.responses import JSONResponse
from fastapi.middleware.cors import CORSMiddleware
from sentence_transformers import SentenceTransformer, util
import torch
import requests
from typing import List, Dict, Optional
from pydantic import BaseModel
# Rate limiting
from slowapi import Limiter, _rate_limit_exceeded_handler
from slowapi.util import get_remote_address
from slowapi.errors import RateLimitExceeded
# Configuration
class Config:
SUPABASE_URL = "https://olbjfxlclotxtnpjvpfj.supabase.co"
SUPABASE_KEY = "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzdXBhYmFzZSIsInJlZiI6Im9sYmpmeGxjbG90eHRucGp2cGZqIiwicm9sZSI6ImFub24iLCJpYXQiOjE3NTIyMzYwMDEsImV4cCI6MjA2NzgxMjAwMX0.7q_o5DCFEAAysnWXMChH4MI5qNhIVc4OgpT5JvgYxc0"
MODEL_NAME = "sentence-transformers/paraphrase-MiniLM-L3-v2"
SIMILARITY_THRESHOLD = 0.7
HF_CACHE = "/tmp/hf"
RATE_LIMIT = "10/minute"
# Initialize FastAPI
app = FastAPI(title="Biruu Chatbot API", version="1.0.0")
# CORS Middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_methods=["*"],
allow_headers=["*"],
)
# Rate Limiter
limiter = Limiter(key_func=get_remote_address)
app.state.limiter = limiter
app.add_exception_handler(RateLimitExceeded, _rate_limit_exceeded_handler)
# Setup Hugging Face cache
os.makedirs(Config.HF_CACHE, exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = Config.HF_CACHE
os.environ["HF_HOME"] = Config.HF_CACHE
# Clean up locked cache
lock_file = f"{Config.HF_CACHE}/models--{Config.MODEL_NAME.replace('/', '--')}.lock"
if os.path.exists(lock_file):
os.remove(lock_file)
model_cache = f"{Config.HF_CACHE}/models--{Config.MODEL_NAME.replace('/', '--')}"
if os.path.exists(model_cache):
shutil.rmtree(model_cache, ignore_errors=True)
# Initialize model
try:
model = SentenceTransformer(Config.MODEL_NAME)
except Exception as e:
raise RuntimeError(f"Failed to load model: {str(e)}")
# Pydantic Models
class ChatMessage(BaseModel):
admin_id: str
session_id: str
is_bot: bool
is_admin: bool
message: str
class DeleteRequest(BaseModel):
id: Optional[str] = None
uid: Optional[str] = None
# Helper Functions
def make_supabase_request(
method: str,
endpoint: str,
params: Optional[Dict] = None,
data: Optional[Dict] = None
) -> requests.Response:
"""Generic function to make Supabase API requests"""
url = f"{Config.SUPABASE_URL}{endpoint}"
headers = {
"apikey": Config.SUPABASE_KEY,
"Authorization": f"Bearer {Config.SUPABASE_KEY}",
"Content-Type": "application/json"
}
try:
if method == "GET":
response = requests.get(url, headers=headers, params=params)
elif method == "POST":
response = requests.post(url, headers=headers, json=data)
elif method == "DELETE":
response = requests.delete(url, headers=headers)
else:
raise ValueError("Unsupported HTTP method")
response.raise_for_status()
return response
except requests.exceptions.RequestException as e:
raise HTTPException(
status_code=500,
detail=f"Supabase request failed: {str(e)}"
)
def get_faq_from_supabase(admin_id: str) -> List[Dict]:
"""Get FAQ items for a specific admin"""
try:
response = make_supabase_request(
"GET",
"/rest/v1/faq_items",
params={"admin_id": f"eq.{admin_id}"}
)
return response.json()
except HTTPException:
return []
# API Endpoints
@app.post("/predict")
async def predict(request: Request):
try:
body = await request.json()
admin_id = body.get("data", [None, None])[0]
question = body.get("data", [None, None])[1]
if not admin_id or not question:
return JSONResponse(
{"data": ["Admin ID atau pertanyaan tidak valid"]},
status_code=400
)
# Get FAQs for this admin
faqs = get_faq_from_supabase(admin_id)
if not faqs:
return {"data": ["Maaf, belum ada FAQ yang tersedia."]}
# Process question
questions = [f["question"] for f in faqs]
answers = [f["answer"] for f in faqs]
# Get embeddings
embeddings = model.encode(questions, convert_to_tensor=True)
query_embedding = model.encode(question, convert_to_tensor=True)
# Calculate similarity
similarity = util.pytorch_cos_sim(query_embedding, embeddings)
best_idx = torch.argmax(similarity).item()
best_score = similarity[0][best_idx].item()
# Threshold similarity (minimal 0.3)
if best_score < 0.3:
return {"data": ["Maaf, saya tidak mengerti pertanyaan Anda"]}
return {"data": [answers[best_idx]]}
except Exception as e:
print(f"Error in prediction: {str(e)}")
return JSONResponse(
{"data": ["Terjadi kesalahan saat memproses pertanyaan"]},
status_code=500
)
@app.post("/save_chat")
async def save_chat(chat: ChatMessage):
"""Save chat message to database"""
try:
response = make_supabase_request(
"POST",
"/rest/v1/chat_logs",
data={
"admin_id": chat.admin_id,
"session_id": chat.session_id,
"is_bot": chat.is_bot,
"is_admin": chat.is_admin,
"message": chat.message
}
)
saved_data = response.json()[0]
return {
"message": "Pesan berhasil disimpan",
"id": saved_data["id"]
}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to save chat: {str(e)}"
)
@app.get("/chat_history")
async def get_chat_history(admin_id: str, session_id: str):
"""Get chat history for specific session"""
try:
response = make_supabase_request(
"GET",
"/rest/v1/chat_logs",
params={
"admin_id": f"eq.{admin_id}",
"or": f"(session_id.eq.{session_id},is_bot.eq.true)",
"order": "created_at.asc"
}
)
return response.json()
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to get chat history: {str(e)}"
)
@app.post("/delete_chat")
async def delete_chat(request: DeleteRequest):
"""Delete specific chat message"""
if not request.id:
raise HTTPException(
status_code=400,
detail="Message ID is required"
)
try:
make_supabase_request(
"DELETE",
f"/rest/v1/chat_logs?id=eq.{request.id}"
)
return {"message": f"Pesan dengan ID {request.id} berhasil dihapus."}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to delete message: {str(e)}"
)
@app.post("/delete_all_by_uid")
async def delete_all_by_uid(request: DeleteRequest):
"""Delete all messages for specific user"""
if not request.uid:
raise HTTPException(
status_code=400,
detail="UID is required"
)
try:
make_supabase_request(
"DELETE",
f"/rest/v1/chat_logs?admin_id=eq.{request.uid}"
)
return {"message": f"Semua pesan untuk UID {request.uid} berhasil dihapus."}
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Failed to delete messages: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy", "version": "1.0.0"} |